prettyprint

2024年2月15日 星期四

TinyML(Edge Impulse) : Voice remote control car || RP2040 || Cortex-M0+

 本篇文章介紹 使用Edge Impulse 語音機器學習,在Raspberry Pi Pico(RP2040) MCU上執行 Voice recognition,用來控制一輛遙控小車。

使用元件:

一. 控制端:

  1. Raspberry Pi Pico 
  2. INMP441 I2S microphone
  3. SD card module
  4. nRF24L01


二、受控端:
  1. Raspberry Pi Pico
  2. TT馬達+65mm 車輪 X 4
  3. L298N 直流馬達驅動板
  4. nRF24L01


本專案使用7個語音來控制小車的動作:
  1. 向前進(forward)
  2. 往後退(backward)
  3. 停在原地(stop)
  4. 方向左轉(turn left)
  5. 方向右轉(turn right)
  6. 速度加快(speed up)
  7. 速度減慢(slow down)
Edge Impulse 本專案使用參數:
  • Create Impulse
  • MFCC

  • Classifier

  • Performance calibration

機器學習訓練過程請參閱成果影片的動態說明。


成果影片:





程式碼:

 控制端:


有關nRF24L01, pico_audio_recorder, storage_driver等library使用起參閱前一篇文章:MCU(RP2040) voice recognition/voice commands using TinyML(Edge Impulse)

  • pico_tinyML_voice.cpp


#include <stdlib.h>
#include <stdio.h>
#include <sttring.h>
#include "pico/stdlib.h"
#include "bsp/board.h"
#include "tusb.h"

#include "pico_storage.h"
#include "hardware/rtc.h"
#include "pico_audio_recorder.h"
#include "hardware/dma.h"
#include "nRF24L01.h"

#include "edge-impulse-sdk/classifier/ei_run_classifier.h"
#include "edge-impulse-sdk/classifier/ei_classifier_smooth.h"
extern bool new_read_data;
extern int16_t *fw_ptr;

#if DATA_ACQUISITION
#else
int raw_feature_get_data(size_t offset, size_t length, float *out_ptr) {
    numpy::int16_to_float(fw_ptr+offset, out_ptr, length);
    return 0;
}
#endif

//=== nRF24L01 irq
char const *addr[5] = {"0node", "1node", "2node","3node","4node"};
#define TX_PIN 17

void irq_callback(uint8_t event_type, uint8_t datapipe, uint8_t* data, uint8_t width) {
    static uint32_t ack_payload=0;
    uint8_t ack_buff[15];
      switch(event_type) {
        case EVENT_RX_DR:
            data[width]='\0';
            printf("RECV== pipe:%d, width:%d, %s\n", datapipe, width, data);
        break;
        case EVENT_TX_DS:
            gpio_put(TX_PIN, !gpio_get(TX_PIN));
            //printf("event_data_sent:%d\n", datapipe);
        break;
        case EVENT_MAX_RT:
        printf("event_max_rt:%d, \n", datapipe);
        break;
    }

}

/*------------- MAIN -------------*/
int main(void)
{
  stdio_init_all();
#if DATA_ACQUISITION 
      rtc_init();
      datetime_t t = {
        .year=2024, .month=02, .day=12, 
        .dotw=6,
        .hour=10, .min=32, .sec=50
      };
     
      if (!rtc_set_datetime(&t)) printf("set rtc error\n");
        
      storage_driver_init();
      
      board_init();
      // init device stack on configured roothub port
      tud_init(BOARD_TUD_RHPORT);

#else 
    gpio_init(TX_PIN);
    gpio_set_dir(TX_PIN,true);
    // == nRF24L01 init
    nRF24_spi_default_init(8, 9, irq_callback);
    nRF24_config_mode(TRANSMITTER);
    nRF24_enable_feature(FEATURE_EN_DPL, true);
    nRF24_set_TX_addr((uint8_t*)addr[0], 5);
    nRF24_set_RX_addr(0, (uint8_t*)addr[0], 5);
    nRF24_enable_data_pipe_dynamic_payload_length(0, true);
    //== edge impulse
      run_classifier_init();
    
      EI_IMPULSE_ERROR res;
      ei_impulse_result_t result = {nullptr};
      signal_t features_signal;
      features_signal.total_length = EI_CLASSIFIER_SLICE_SIZE;
      features_signal.get_data = &raw_feature_get_data;

      ei_classifier_smooth_t smooth;
      ei_classifier_smooth_init(&smooth, 4, 3, 0.9, 0.3);
#endif

  inmp441_pio_init(INMP441_pio, INMP441_SM, INMP441_SD, INMP441_SCK, INMP441_SAMPLE_RATE);

  uint8_t f_idx=0;

  while (1)
  {
#if DATA_ACQUISITION
      if (get_recorder_state() == STATE_START_RECORDING) {
        inmp441_starting_recording_to_file_wav();
      }
         
      tud_task(); // tinyusb device task
#else

    if (new_read_data) {
          new_read_data = false;
//absolute_time_t t1 = get_absolute_time();
          res = run_classifier_continuous(&features_signal, &result, false,true );

          if (res != EI_IMPULSE_OK) {
                  ei_printf("ERR: Failed to run classifier (%d)\n", res);
          }
         
        //display_results(&result); printf("\n"); // only for debug
          ei_classifier_smooth_update(&smooth, &result);
          for (uint16_t i = 0; i < EI_CLASSIFIER_LABEL_COUNT; i++) {
            //result.classification[i].value = run_moving_average_filter(&classifier_maf[ix], result.classification[i].value);
            if (result.classification[i].value > 0.9f) 
            { 
              // for debug
              //ei_printf("  %s: ", ei_classifier_inferencing_categories[i]);
              //ei_printf("%.5f\r\n", result.classification[i].value);
              // for running
              nRF24_write_payload((uint8_t*)ei_classifier_inferencing_categories[i], strlen(ei_classifier_inferencing_categories[i]));
              if (strcmp(ei_classifier_inferencing_categories[i], "noise")!=0)
                run_classifier_init();
              break;
            } 
          }

        //absolute_time_t t2 = get_absolute_time();
        //printf("time:%lld\n", absolute_time_diff_us(t1,t2));
        //printf("\n");
   
    }
   
#endif
      tight_loop_contents();
  }

  return 0;
}

受控端(小車)


  • pico_tinyML_voice_RC_CAR.c
#include <stdio.h>
#include "pico/stdlib.h"
#include "nRF24L01.h"
#include "string.h"
#include "hardware/pwm.h"
#include "ws2812.h"

#define CAR_PIN1A   16
#define CAR_PIN1B   17
#define CAR_PIN2A   18
#define CAR_PIN2B   19
#define SPEED_MAX   5
uint slice1a, slice1b, slice2a, slice2b;
uint chan_1a,chan_1b,chan_2a,chan_2b;

uint8_t addr[5][5] = {"0node", "1node", "2node","3node","4node"};

enum {
    NOISE=0,
    FORWARD,
    BACKWARD,
    STOP,
    TURN_LEFT,
    TURN_RIGHT,
    SPEED_UP,
    SLOW_DOWN,
    ACTION_MAX,
};

int8_t speed=0;
uint16_t pwm_top_count[SPEED_MAX+1] = {0, 4000,8000,12000,16000,20000};
uint32_t ws2812_color[SPEED_MAX+1] = {0x0, 0xFF0000, 0xFF0000, 0x8FFF00, 0x8FFF00, 0xFF00};
uint8_t voice_state = 0;
uint8_t current_direction=STOP;

#define NUM_PIXELS 5
void play_ws2812() {
    for (int j=0; j < speed; j++) { 
        put_grb_pixel(ws2812_color[j+1]);
    }
    for (int j=speed; j < SPEED_MAX; j++) { 
        put_grb_pixel(ws2812_color[0]);
    }
    //sleep_ms(100);
    //printf("speed:%d\n", speed);
}
//nRF24L01 irq callback
void irq_callback(uint8_t event_type, uint8_t datapipe, uint8_t* data, uint8_t width) {
    static uint32_t ack_payload=0;
    uint8_t ack_buff[15];
      switch(event_type) {
        case EVENT_RX_DR:
            data[width]='\0';
            
            if (strcmp(data, "noise")==0) voice_state=NOISE;
            if (strcmp(data, "forward")==0) voice_state=FORWARD;
            if (strcmp(data, "backward")==0) voice_state=BACKWARD;
            if (strcmp(data, "stop")==0) voice_state=STOP;
            if (strcmp(data, "turn_left")==0) voice_state=TURN_LEFT;
            if (strcmp(data, "turn_right")==0) voice_state=TURN_RIGHT;
            if (strcmp(data, "speed_up")==0) voice_state=SPEED_UP;
            if (strcmp(data, "slow_down")==0) voice_state=SLOW_DOWN;

            printf("RECV== stat:%d, width:%d, %s\n", voice_state, width, data);
        break;
        case EVENT_TX_DS:
            printf("event_data_sent:%d\n", datapipe);
        break;
        case EVENT_MAX_RT:
            printf("EVENT_MAX_RT:%d\n", datapipe);
        break;
    }
}


void voice_action(uint8_t stat) {
    switch(stat) {
        case FORWARD:
            pwm_set_chan_level(slice1a, chan_1a, pwm_top_count[speed]);
            pwm_set_chan_level(slice2a, chan_2a, pwm_top_count[speed]);
            pwm_set_chan_level(slice1b, chan_1b, 0);
            pwm_set_chan_level(slice2b, chan_2b, 0);
            current_direction = FORWARD;
        break;
        case BACKWARD:
            pwm_set_chan_level(slice1a, chan_1a, 0);
            pwm_set_chan_level(slice2a, chan_2a, 0);
            pwm_set_chan_level(slice1b, chan_1b, pwm_top_count[speed]);
            pwm_set_chan_level(slice2b, chan_2b, pwm_top_count[speed]);
            current_direction = BACKWARD;
        break;
        case STOP:
            pwm_set_chan_level(slice1a, chan_1a, 0);
            pwm_set_chan_level(slice2a, chan_2a, 0);
            pwm_set_chan_level(slice1b, chan_1b, 0);
            pwm_set_chan_level(slice2b, chan_2b, 0);
            current_direction=STOP;
        break;
        case TURN_LEFT:
            pwm_set_chan_level(slice1a, chan_1a, 0);         
            pwm_set_chan_level(slice2a, chan_2a, 0);
            pwm_set_chan_level(slice1b, chan_1b, 0);
            pwm_set_chan_level(slice2b, chan_2b, 0);
            pwm_set_chan_level(slice1a, chan_1a, pwm_top_count[speed]);
            sleep_ms(500);
        break;
        case TURN_RIGHT:
            pwm_set_chan_level(slice1a, chan_1a, 0);
            pwm_set_chan_level(slice2a, chan_2a, 0);
            pwm_set_chan_level(slice1b, chan_1b, 0);
            pwm_set_chan_level(slice2b, chan_2b, 0);
            pwm_set_chan_level(slice2a, chan_2a, pwm_top_count[speed]);
            sleep_ms(500);
        break;
        case SPEED_UP:
           speed++;
           if (speed > SPEED_MAX) speed=SPEED_MAX;   
           play_ws2812();      
        break;
        case SLOW_DOWN:
           speed--;
           if (speed < 0) speed=0; 
           play_ws2812();
        break;
        default:
        break;
    }
}

int main()
{
    
    stdio_init_all(); 

    ws2812_init(pio0, 0, 20);

    gpio_set_function(CAR_PIN1A, GPIO_FUNC_PWM);
    gpio_set_function(CAR_PIN1B, GPIO_FUNC_PWM);
    gpio_set_function(CAR_PIN2A, GPIO_FUNC_PWM);
    gpio_set_function(CAR_PIN2B, GPIO_FUNC_PWM);

    slice1a = pwm_gpio_to_slice_num(CAR_PIN1A);
    slice1b = pwm_gpio_to_slice_num(CAR_PIN1B);
    slice2a = pwm_gpio_to_slice_num(CAR_PIN2A);
    slice2b = pwm_gpio_to_slice_num(CAR_PIN2B);

    chan_1a = pwm_gpio_to_channel(CAR_PIN1A);
    chan_1b = pwm_gpio_to_channel(CAR_PIN1B);
    chan_2a = pwm_gpio_to_channel(CAR_PIN2A);
    chan_2b = pwm_gpio_to_channel(CAR_PIN2B);

    pwm_config c = pwm_get_default_config();
    pwm_config_set_clkdiv(&c, 125);  // 20ms period, steps 20000, clkdiv = 125 
    pwm_config_set_wrap(&c, 20000);
    pwm_config_set_phase_correct(&c, false);
    pwm_init(slice1a, &c, true);
    pwm_init(slice1b, &c, true);
    pwm_init(slice2a, &c, true);
    pwm_init(slice2b, &c, true);
    
    uint32_t count=0;
    uint8_t status;

    nRF24_spi_default_init(8, 9, irq_callback);
    nRF24_config_mode(RECEIVER);
    nRF24_enable_feature(FEATURE_EN_DPL, true);
    nRF24_set_RX_addr(0, addr[0], 5);
    nRF24_enable_data_pipe_dynamic_payload_length(0, true);

   
    while(1) {
        if (voice_state > 0 && voice_state < ACTION_MAX) {
            voice_action(voice_state);
            voice_action(current_direction);
            voice_state = NOISE;
        }
       
        tight_loop_contents();
    }
    
    return 0;
}

  • CMakeLists.txt


# Generated Cmake Pico project file

cmake_minimum_required(VERSION 3.13)

set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)

# Initialise pico_sdk from installed location
# (note this can come from environment, CMake cache etc)
set(PICO_SDK_PATH "/home/duser/pico/pico-sdk")

set(PICO_BOARD pico CACHE STRING "Board type")

# Pull in Raspberry Pi Pico SDK (must be before project)
include(pico_sdk_import.cmake)

if (PICO_SDK_VERSION_STRING VERSION_LESS "1.4.0")
  message(FATAL_ERROR "Raspberry Pi Pico SDK version 1.4.0 (or later) required. Your version is ${PICO_SDK_VERSION_STRING}")
endif()

project(pico_tinyML_voice_RC_CAR C CXX ASM)

# Initialise the Raspberry Pi Pico SDK
pico_sdk_init()

# Add executable. Default name is the project name, version 0.1

add_executable(pico_tinyML_voice_RC_CAR pico_tinyML_voice_RC_CAR.c )

pico_set_program_name(pico_tinyML_voice_RC_CAR "pico_guesture_ws2812")
pico_set_program_version(pico_tinyML_voice_RC_CAR "0.1")

pico_enable_stdio_uart(pico_tinyML_voice_RC_CAR 0)
pico_enable_stdio_usb(pico_tinyML_voice_RC_CAR 1)

# Add the standard library to the build
target_link_libraries(pico_tinyML_voice_RC_CAR
        pico_stdlib
        hardware_pwm)

# Add the standard include files to the build
target_include_directories(pico_tinyML_voice_RC_CAR PRIVATE
  ${CMAKE_CURRENT_LIST_DIR}
  ${CMAKE_CURRENT_LIST_DIR}/.. # for our common lwipopts or any other standard includes, if required
)

# Add any user requested libraries
add_subdirectory(nRF24L01)
target_link_libraries(pico_tinyML_voice_RC_CAR 
        nRF24L01_drv
)

add_subdirectory(ws2812)
target_link_libraries(pico_tinyML_voice_RC_CAR 
      ws2812
)

pico_add_extra_outputs(pico_tinyML_voice_RC_CAR)


ws2812:

  • ws2812.c


#include "ws2812.h"
#include "stdlib.h"
#include "string.h"

#define NUM_PIXELS 12


#define green 0x1f0000
#define red 0x001f00
#define blue 0x00001f

static inline void ws2812_program_init(PIO pio, uint sm, uint pin, float freq) {
    pio_gpio_init(pio, pin);
    pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

    uint offset = pio_add_program(pio, &ws2812_program);

    pio_sm_config c = ws2812_program_get_default_config(offset);
    sm_config_set_sideset_pins(&c, pin);
    sm_config_set_out_shift(&c, false, true, 24);
    sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

    int cycles_per_bit = ws2812_T1 + ws2812_T2 *2;
    float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
    sm_config_set_clkdiv(&c, div);

    pio_sm_init(pio, sm, offset, &c);
    pio_sm_set_enabled(pio, sm, true);
}

void put_grb_pixel(uint32_t pixel_grb) {
    pio_sm_put_blocking(pio0, 0, pixel_grb << 8u);
}

static inline uint32_t urgb_u32(uint8_t r, uint8_t g, uint8_t b) {
    return
            ((uint32_t) (r) << 8) |
            ((uint32_t) (g) << 16) |
            (uint32_t) (b);
}

void clear_pixel() {
    for (int i = 0; i < NUM_PIXELS; i++) put_grb_pixel(0x000000);
}

void ws2812_init(PIO pio, uint sm, uint ws2812_pin) {

    ws2812_program_init(pio, sm,  ws2812_pin, 800000);
}



  • ws2812.h



#ifndef _WS2812_H_
#define _WS2812_H_
#include <stdio.h>
#include "pico/stdlib.h"
#include "hardware/pio.h"
#include "ws2812.pio.h"
#include "hardware/clocks.h"



void ws2812_init(PIO pio, uint sm, uint ws2812_pin);
void put_grb_pixel(uint32_t pixel_grb);

#endif 

  • ws2812.pio


;
; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
;
; SPDX-License-Identifier: BSD-3-Clause
;

.program ws2812
.side_set 1

.define public T1 2
.define public T2 2


.lang_opt python sideset_init = pico.PIO.OUT_HIGH
.lang_opt python out_init     = pico.PIO.OUT_HIGH
.lang_opt python out_shiftdir = 1

.wrap_target
bitloop:
    out x, 1       side 0 [T1 - 1] ; Side-set still takes place when instruction stalls
    jmp !x do_zero side 1 [T2 - 1] ; Branch on the bit we shifted out. Positive pulse
do_one:
    jmp  bitloop   side 1 [T2 - 1] ; Continue driving high, for a long pulse
do_zero:
    nop            side 0 [T2 - 1] ; Or drive low, for a short pulse
.wrap

% c-sdk {

%}

  • CMakeLists.txt(ws2812)


add_library(ws2812 INTERFACE)
pico_generate_pio_header(ws2812 ${CMAKE_CURRENT_LIST_DIR}/ws2812.pio)
target_sources(ws2812 INTERFACE
    ${CMAKE_CURRENT_LIST_DIR}/ws2812.c
)

target_include_directories(ws2812 INTERFACE
    ${CMAKE_CURRENT_LIST_DIR}
)

target_link_libraries(ws2812 INTERFACE
        hardware_pio
)



沒有留言:

張貼留言