prettyprint

2023年11月1日 星期三

[Raspberry Pi Pico] Audio Recorder USB device using INMP441 I2S microphone

本文章介紹使用Raspberry Pi Pico的PIO功能,擷取INMP441 I2S microphone製作一台錄音機,將檔案存在SD卡上。連接USB Host時,可透過USB MSC device讀取錄音檔案。


一、測試項目:

  1. 根據inmp441 datasheet擷取24 bits的 32 bit frame, LSB 8bit 為0, 2 channels, 32000 sample rate.
  2. 擷取16 bit 的32 bit frame, LSB 16 bits補0, 2 channels, 32000 sample rate.
  3. 擷取16 bit 的16 bit frame, 2 channels, 44100 sample rate.
  4. 擷取16 bit 的16 bit frame, 1 channels, 44100 sample rate.

二、INMP441 datasheet節錄:


  1. The slave serial-data port’s format is I2S, 24-bit, two's complement.
  2. There must be 64 SCK cycles in each WS stereo frame, or 32 SCK cycles per data-word.
  3. The default data format is I2S (two’s complement), MSB-first. In this format, the MSB of each word is delayed by one SCK cycle from the start of each half-frame

三、程式說明:

使用兩個DMA channel擷取資料到8 KB RAM buffer, 每個DMA channel擷取資料後chan_to到另一個DMA channel,繼續擷取資料,此時將第一個DMA擷取的資料寫到SD上。

根據datasheet的clock時序圖,PIO程式碼如下。

實作後測試發現錄音檔音量非常小,檢視原始資料發現MSB均為00 or FF,
因為資料是2's complement,如下圖所示 00=+0, ff=-0,所以音量非常小。

因此,修正擷取資料程式,忽略MSB 8 bit(保留signed bit)只擷取16 bits,測試結果如「成果影片」所示。
詳細程式碼附於文章末尾。

四、成果影片:


五、程式碼:


有關msc_device_disk與spi_sdmmc詳細說明可參考前篇文章說明。
  • CMakeLists.txt(pico_audio_recorder)
add_library(pico_audio_recorder INTERFACE)
pico_generate_pio_header(pico_audio_recorder ${CMAKE_CURRENT_LIST_DIR}/pico_audio_recorder.pio)
target_sources(pico_audio_recorder INTERFACE
    ${CMAKE_CURRENT_LIST_DIR}/pico_audio_recorder.c
)

target_include_directories(pico_audio_recorder INTERFACE
    ${CMAKE_CURRENT_LIST_DIR}
)

target_link_libraries(pico_audio_recorder INTERFACE
        hardware_dma
        hardware_pio
        hardware_rtc
        pico_stdlib
)

  • pico_audio_recorder.c
#include "stdio.h"
#include "pico/stdlib.h"
#include "hardware/dma.h"
#include "string.h"
#include "inttypes.h"
#include "pico_audio_recorder.pio.h"
#include "pico_audio_recorder.h"
#include "tusb.h"
#include "hardware/clocks.h"
#include "hardware/rtc.h"
#include "spi_sdmmc.h"

static int32_t buff1[PIO_DMA_BUFFER_SIZE/4];
static int32_t buff2[PIO_DMA_BUFFER_SIZE/4];
static int dma_read_buff1_channel;
static int dma_read_buff2_channel;
static int32_t *fw_ptr = buff1;
static bool new_read_data=false;
static uint8_t recorder_state=STATE_STOP;

static uint16_t channels = INMP441_CHANNEL_MONO;
static uint16_t bitPerSample = INMP441_BIT_PER_SAMPLE_16;
static uint32_t sampleRate = INMP441_SAMPLE_RATE_44_1K;


void start_stop_button_cb(uint gpio, uint32_t event_mask) {

  if (gpio == BUTTON_PIN) {
    if (event_mask == GPIO_IRQ_EDGE_RISE) { 
        gpio_acknowledge_irq(BUTTON_PIN, GPIO_IRQ_EDGE_RISE);
        switch (get_recorder_state()) {
          case STATE_STOP:
            set_recorder_state(STATE_START_RECORDING);
          break;
          case STATE_RECORDING:
            set_recorder_state(STATE_STOPING);
          break;
          case STATE_START_RECORDING:
          break;
          case STATE_STOPING:
          break;

        }
    }
  
    
  }
}

void pio_irq_read_data() {
     if (pio_interrupt_get(INMP441_pio, 0)) {
        pio_interrupt_clear(INMP441_pio, 0);
        printf("irq 0:\n");
        //dma_channel_start(dma_read_buff1_channel);
     }
     if (pio_interrupt_get(INMP441_pio, 1)) {
        pio_interrupt_clear(INMP441_pio, 1);
        printf("irq:1\n");
     }
}


void dma_handler() {
   if (dma_channel_get_irq1_status(dma_read_buff1_channel)) {
      dma_channel_acknowledge_irq1(dma_read_buff1_channel);
      dma_channel_set_write_addr(dma_read_buff1_channel, buff1, false);
      fw_ptr = buff1;
      new_read_data=true;
   }
   if (dma_channel_get_irq1_status(dma_read_buff2_channel)) {
      dma_channel_acknowledge_irq1(dma_read_buff2_channel);
      dma_channel_set_write_addr(dma_read_buff2_channel, buff2, false);
      fw_ptr = buff2;
      new_read_data=true;
   }
}

void set_pin_LED(bool green) {
   if (green) {
      gpio_put(GREEN_PIN, true);
      gpio_put(RED_PIN, false);
   } else {
      gpio_put(GREEN_PIN, false);
      gpio_put(RED_PIN, true);
   }
}

/*!
* \brief sdio memory card pio initialize
* \param pio: pio number
* \param sm state machine
* \param cmd_pin command pin
* \param clk_pin CLK pin
* \param data_pin_base data 0~4 pins(D0~D3)
* \param clk_int Integer part of the divisor
* \param clk_frac – Fractional part in 1/256ths
*/
void inmp441_pio_init(PIO pio,  uint sm, uint sd_pin, uint sideset_pin) { // sideset_pin ws_clk
  
    pio_gpio_init(pio, sd_pin);
    pio_gpio_init(pio, sideset_pin);
    pio_gpio_init(pio, sideset_pin+1);
    gpio_pull_down(sd_pin);
    //gpio_pull_up(sideset_pin);
    //gpio_pull_up(sideset_pin+1);
    
    //== INMP441 SM ==
    uint offset = pio_add_program(pio, &inmp441_program);
    pio_sm_config c = inmp441_program_get_default_config(offset);
    pio_sm_set_consecutive_pindirs(pio, sm, sd_pin, 1, false);
    pio_sm_set_consecutive_pindirs(pio, sm, sideset_pin, 2, true); // WS, SCK
    sm_config_set_in_pins(&c, sd_pin);
    sm_config_set_set_pins(&c, sideset_pin,2);
    sm_config_set_sideset_pins(&c, sideset_pin);
    
    sm_config_set_in_shift(&c, false, true, bitPerSample);// 16 or 32
   
    sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);
    float div = clock_get_hz(clk_sys)/(sampleRate*64*2); // 64 clocks, 2 PIO clocks
    sm_config_set_clkdiv(&c, div);
 
    pio_sm_init(pio, sm, offset, &c);

      // initial state machine but not run
    pio_sm_set_enabled(pio, sm, false);

    //** for test only
    uint pio_irq = pio_get_index(pio)? PIO1_IRQ_0:PIO0_IRQ_0;
    pio_set_irq0_source_enabled(pio, pis_interrupt0, true);
    //pio_set_irq0_source_enabled(pio, pis_interrupt1, true);
    irq_add_shared_handler(pio_irq, pio_irq_read_data, PICO_SHARED_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY);
    irq_set_enabled(pio_irq, true);
   
    uint pio_base = (pio==pio0)?PIO0_BASE:PIO1_BASE;

    //==== READ DMA ===
    dma_read_buff1_channel = dma_claim_unused_channel(true);
    dma_read_buff2_channel = dma_claim_unused_channel(true);

    dma_channel_config dc1 = dma_channel_get_default_config(dma_read_buff1_channel);
    channel_config_set_write_increment(&dc1, true);
    channel_config_set_read_increment(&dc1, false);
    channel_config_set_dreq(&dc1, pio_get_dreq(pio, sm, false));
    channel_config_set_chain_to(&dc1, dma_read_buff2_channel);  
    //  for 32 bit frame
    if (bitPerSample == INMP441_BIT_PER_SAMPLE_32) {
         channel_config_set_transfer_data_size(&dc1, DMA_SIZE_32); //DMA_SIZE_8,16,32
         dma_channel_configure(dma_read_buff1_channel,
                  &dc1, buff1, (void*) (pio_base+PIO_RXF0_OFFSET),  // 
                  PIO_DMA_BUFFER_SIZE>> DMA_SIZE_32, false); //DMA_SIZE_8 or 16 or 32
    }
  // for 16 bit frame
  if (bitPerSample == INMP441_BIT_PER_SAMPLE_16) {
         channel_config_set_transfer_data_size(&dc1, DMA_SIZE_16); //DMA_SIZE_8,16,32
         dma_channel_configure(dma_read_buff1_channel,
               &dc1, buff1, (void*) (pio_base+PIO_RXF0_OFFSET),  // 
               PIO_DMA_BUFFER_SIZE>> DMA_SIZE_16, false); //DMA_SIZE_8 or 16 or 32
  }

   dma_channel_config dc2 = dma_channel_get_default_config(dma_read_buff2_channel);
    channel_config_set_write_increment(&dc2, true);
    channel_config_set_read_increment(&dc2, false);
    //channel_config_set_bswap(&dc2, true);
    channel_config_set_dreq(&dc2, pio_get_dreq(pio, sm, false));
    channel_config_set_chain_to(&dc2, dma_read_buff1_channel); 

   // for 32 bit frame
   if (bitPerSample == INMP441_BIT_PER_SAMPLE_32) {
         channel_config_set_transfer_data_size(&dc2, DMA_SIZE_32); //DMA_SIZE_8,16,32
         dma_channel_configure(dma_read_buff2_channel,
                  &dc2, buff2, (void*) (pio_base+PIO_RXF0_OFFSET),  // SDIO_DATA_READ_SM = 1
                  PIO_DMA_BUFFER_SIZE>> DMA_SIZE_32, false); //DMA_SIZE_8 or 16 or 32
   }
   // for 16 bit frame
   if (bitPerSample == INMP441_BIT_PER_SAMPLE_16) {
         channel_config_set_transfer_data_size(&dc2, DMA_SIZE_16); //DMA_SIZE_8,16,32
         dma_channel_configure(dma_read_buff2_channel,
                  &dc2, buff2, (void*) (pio_base+PIO_RXF0_OFFSET),  // SDIO_DATA_READ_SM = 1
                  PIO_DMA_BUFFER_SIZE>> DMA_SIZE_16, false); //DMA_SIZE_8 or 16 or 32
   }

   dma_channel_set_irq1_enabled(dma_read_buff1_channel, true);
   dma_channel_set_irq1_enabled(dma_read_buff2_channel, true);

    // Configure the processor to run dma_handler() when DMA IRQ 0 is asserted
    //irq_set_exclusive_handler(DMA_IRQ_1, dma_handler);
    irq_add_shared_handler(DMA_IRQ_1, dma_handler, PICO_SHARED_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY);
    irq_set_enabled(DMA_IRQ_1, true);
   
   gpio_init(BUTTON_PIN);
   gpio_set_dir(BUTTON_PIN, false);
   gpio_pull_down(BUTTON_PIN);
   gpio_init(RED_PIN);
   gpio_set_dir(RED_PIN, true);
   gpio_init(GREEN_PIN);
   gpio_set_dir(GREEN_PIN, true);
   recorder_state = STATE_STOP;
   set_pin_LED(true);

   gpio_set_irq_enabled_with_callback(BUTTON_PIN, GPIO_IRQ_EDGE_RISE | GPIO_IRQ_EDGE_FALL, true, start_stop_button_cb);
}

bool write_file_wave_header(FIL *fil) {
   UINT bw;
	WAVE_HEADER wave_header;
	wave_header.riff[0] = 'R';wave_header.riff[1] = 'I';
	wave_header.riff[2] = 'F';wave_header.riff[3] = 'F';
	wave_header.size = (uint32_t)0;
	wave_header.wave[0] = 'W';wave_header.wave[1] = 'A';
	wave_header.wave[2] = 'V';wave_header.wave[3] = 'E';
	wave_header.fmt[0] = 'f';wave_header.fmt[1] = 'm';
	wave_header.fmt[2] = 't';wave_header.fmt[3] = ' ';
	wave_header.fmt_size = 16;
	wave_header.format = 1; // PCM
	wave_header.channels = channels; // channels
	wave_header.sampleRate=sampleRate;  // sample rate
	wave_header.rbc = sampleRate*bitPerSample*channels/8;
	wave_header.bc =  bitPerSample*channels/8;
	wave_header.bitsPerSample = bitPerSample; //bitsPerSample
	wave_header.data[0] = 'd'; wave_header.data[1] = 'a';
	wave_header.data[2] = 't'; wave_header.data[3] = 'a';
	wave_header.data_size = 0;
	if (f_write(fil, (uint8_t*)&wave_header, sizeof(wave_header), &bw)!= FR_OK) return false;
   return true;
}
bool modify_file_wave_header(FIL *fil, uint32_t data_length) {
   uint bw;
	uint32_t total_len = data_length+36;
	f_lseek(fil, 4);
	f_write(fil, (uint8_t*)&total_len, 4, &bw);
	f_lseek(fil, 40);
	f_write(fil, (uint8_t*)&data_length, 4, &bw);

   return true;
}

void inmp441_starting_recording_to_file_wav() { 
   uint32_t wav;
   uint bw;
   FIL fil;
   uint8_t filename[100];
   datetime_t t;
   FRESULT res;
   uint32_t data_length;
   FATFS fs;
   
   rtc_get_datetime(&t);
   tud_disconnect();
   sleep_ms(1);
   if (f_mount(&fs, SDMMC_PATH,1) != FR_OK) {
      tud_connect();
      sleep_ms(1);
      return;
   }
   
   sprintf(filename, "%s/V%02d%02d%02d-%02d%02d%02d.wav", SDMMC_PATH,t.year%100,t.month,t.day,t.hour,t.min,t.sec);
   if (f_open(&fil, filename, FA_CREATE_ALWAYS|FA_WRITE) != FR_OK) {
      printf("open file error:%s\n", filename);
      tud_connect();
      recorder_state = STATE_STOP;
      set_pin_LED(true);
      return;
   }

   if (!write_file_wave_header(&fil)) {
      tud_connect();
      recorder_state = STATE_STOP;
      set_pin_LED(true);
      return;
   }

   recorder_state = STATE_RECORDING;
   set_pin_LED(false);
   
   pio_sm_exec(INMP441_pio, INMP441_SM, pio_encode_mov(pio_isr, pio_null)); // enpty ISR
   pio_sm_clear_fifos(INMP441_pio, INMP441_SM);
   pio_sm_exec(INMP441_pio, INMP441_SM, pio_encode_jmp(inmp441_offset_inmp441_start));
   //dma_channel_start(dma_read_buff1_channel);
   dma_channel_set_write_addr(dma_read_buff2_channel, buff2, false);
   dma_channel_set_write_addr(dma_read_buff1_channel, buff1, true);
   pio_sm_set_enabled(INMP441_pio, INMP441_SM, true);

   new_read_data=false;
   
   sleep_ms(300);
   data_length=0;
   while (recorder_state == STATE_RECORDING) { 
      if (new_read_data) {
         new_read_data=false;
         f_write(&fil, (uint8_t*)fw_ptr, PIO_DMA_BUFFER_SIZE, &bw);
         data_length += PIO_DMA_BUFFER_SIZE;
      }
        
   } 
   modify_file_wave_header(&fil, data_length);
   f_close(&fil);
   f_unmount(SDMMC_PATH);

   pio_sm_set_enabled(INMP441_pio, INMP441_SM, false);
      
   dma_channel_abort(dma_read_buff1_channel);
   dma_channel_abort(dma_read_buff2_channel);
   
   
   recorder_state = STATE_STOP;
   set_pin_LED(true);
printf("Stop recording\n");
   tud_connect();
}

uint8_t get_recorder_state() {
   return recorder_state;
}
void    set_recorder_state(uint8_t state) {
   recorder_state = state;
}
  • pico_audio_recorder.h

#ifndef __PICO_AUDIO_RECORDER_
#define __PICO_AUDIO_RECORDER_
#include "hardware/pio.h"
#include "ff.h"

#define INMP441_pio         	pio0
#define INMP441_SM          	0

#define INMP441_SCK          	18
#define INMP441_SD           	20

#define INMP441_CHANNEL_STEREO	2
#define INMP441_CHANNEL_MONO	1
#define INMP441_SAMPLE_RATE_32K  	32000
#define INMP441_SAMPLE_RATE_44_1K  	44100

#define INMP441_BIT_PER_SAMPLE_32	32
#define INMP441_BIT_PER_SAMPLE_16	16

#define BUTTON_PIN      		21
#define RED_PIN					16
#define GREEN_PIN				17

#define PIO_DMA_BUFFER_SIZE 8192

enum RECORDER_STATE{
    STATE_STOP=0,
	STATE_STOPING,
    STATE_START_RECORDING,
    STATE_RECORDING,
};

typedef struct _WaveHeader{
	char riff[4];
	uint32_t size;
	char wave[4];
	char fmt[4];
	uint32_t fmt_size;
	uint16_t format; //1:PCM
	uint16_t channels; // channels
	uint32_t sampleRate;  // sample rate
	uint32_t rbc;//sampleRate*bitsPerSample*channels/8
	uint16_t bc; //bitsPerSample*channels/8
	uint16_t bitsPerSample; //bitsPerSample
	char data[4];
	uint32_t data_size;
} WAVE_HEADER;

void inmp441_pio_init(PIO pio,  uint sm, uint sd_pin, uint sideset_pin);
void inmp441_starting_recording_to_file_wav();
uint8_t get_recorder_state();
void    set_recorder_state(uint8_t state);

#endif

  • pico_audio_recorder.pio

/*
;=======  (stereo) get 16 bit in 16 bit frame =======
.program inmp441
.origin 0
.side_set 2  ; ws/clk
public inmp441_start:
.wrap_target
; left channel
    set y, 6                    side 0b00  ; ignore 1+8 bit
    nop                         side 0b01  ; one clock delay
    nop                         side 0b00
    in pins, 1                  side 0b01  ; MSB signed bit
left_idle:          
    nop                         side 0b00
    jmp y--, left_idle          side 0b01  ; one clock delay+MSB signed bit+7 ignore bit=9 bits

    set x, 14                   side 0b00 ; other 15 bits
left_channel_loop:
    in  pins, 1                 side 0b01
    jmp x--, left_channel_loop  side 0b00  ; 9+15 clocks

    set y, 7                    side 0b01 ; last 8 clock
left_idle_1:          
    nop                         side 0b00
    jmp y--, left_idle_1        side 0b01 ; cycle:9+15+8=32


; right channel
    set y, 6                    side 0b10  ; ignore 1+8 bit
    nop                         side 0b11  ; one clock delay
    nop                         side 0b10
    in pins, 1                  side 0b11  ; MSB signed bit
right_idle:          
    nop                         side 0b10
    jmp y--, right_idle          side 0b11  ; one clock delay+MSB signed bit+7 ignore bit=9 bits

    set x, 14                   side 0b10
right_channel_loop:
    in  pins, 1                 side 0b11
    jmp x--, right_channel_loop  side 0b10  ; 9+15 clocks

    set y, 7                    side 0b11 
right_idle_1:          
    nop                         side 0b10
    jmp y--, right_idle_1        side 0b11 ; cycle:9+15+8

.wrap
;=======  (stereo) get 16 bit in 16 bit frame =======
*/




;=======  (mono, left channel) get 16 bit in 16 bit frame =======
.program inmp441
.origin 0
.side_set 2  ; ws/clk
public inmp441_start:
.wrap_target
; left channel
    set y, 6                    side 0b00  ; ignore 1+8 bit
    nop                         side 0b01  ; one clock delay
    nop                         side 0b00
    in pins, 1                  side 0b01  ; MSB signed bit
left_idle:          
    nop                         side 0b00
    jmp y--, left_idle          side 0b01  ; one clock delay+MSB signed bit+7 ignore bit=9 bits

    set x, 14                   side 0b00
left_channel_loop:
    in  pins, 1                 side 0b01
    jmp x--, left_channel_loop  side 0b00  ; 9+15 clocks

    set y, 7                    side 0b01 
left_idle_1:          
    nop                         side 0b00
    jmp y--, left_idle_1        side 0b01 ; cycle:9+15+8

;right channel 
    set y, 30                   side 0b10
right_idle_loop:
    nop                         side 0b11
    jmp y--, right_idle_loop    side 0b10
    nop                         side 0b11
.wrap
;=======  (mono, left channel) =======


/*
;======= shift out 7 bit and get 16 bit in 32 bit frame =======
.define IGNORE_MSB_BITS  (6+1)   ; one bit delay
.program inmp441
.origin 0
.side_set 2  ; ws/clk
public inmp441_start:

.wrap_target
; left channel
    set y, (IGNORE_MSB_BITS-2)  side 0b00
left_idle:          
    nop                         side 0b01
    jmp y--, left_idle          side 0b00
    nop                         side 0b01

    set x, 15                   side 0b00 ; ignore msb 8 bits and capture the other 16 bits
left_channel_loop:
    in  pins, 1                 side 0b01
    jmp x--, left_channel_loop  side 0b00
    nop                         side 0b01

    set y, (13-IGNORE_MSB_BITS) side 0b00
left_idle_1:          
    nop                         side 0b01
    jmp y--, left_idle_1          side 0b00
    in NULL, 16                 side 0b01  


; right channel
    set y, (SHIFT_OUT_BITS-2)  side 0b10
right_idle:          
    nop                         side 0b11
    jmp y--, right_idle          side 0b10
    nop                         side 0b11

    set x, 15                   side 0b10
right_channel_loop:
    in  pins, 1                 side 0b11
    jmp x--, right_channel_loop  side 0b10
    nop                         side 0b11

    set y, (13-SHIFT_OUT_BITS) side 0b10
right_idle_1:          
    nop                         side 0b11
    jmp y--, right_idle_1          side 0b10
    in NULL, 16                 side 0b11  
.wrap
;======= shift out 7 bit and get 16 bit in 32 bit frame =======
*/


/*
;====== (STEREO) INMP441 I2S 32 bit per sample =======================
.program inmp441
.origin 0
.side_set 2  ; ws/clk
public inmp441_start:
.wrap_target
; left channel
set x, 22                       side 0b00
nop                             side 0b01 ;delay one SCK clock
nop                             side 0b00 
left_channel_loop:
    in  pins, 1                 side 0b01 ; ; 24 bits 
    jmp x--, left_channel_loop  side 0b00
    in pins, 1                  side 0b01

    set y, 5                    side 0b00 ; 7 SCK clocks
left_idle:          
    nop                         side 0b01
    jmp y--, left_idle          side 0b00
    in NULL, 8                  side 0b01 

; right channel
set x, 22                       side 0b10
nop                             side 0b11
nop                             side 0b10 
right_channel_loop:
    in  pins, 1                 side 0b11
    jmp x--, right_channel_loop side 0b10
    in pins, 1                  side 0b11

    set y, 5                    side 0b10
right_idle:          
    nop                         side 0b11
    jmp y--, right_idle         side 0b10
    in NULL, 8                  side 0b11  
.wrap

*/
  • glue.c

#include "stdio.h"
#include "pico/stdlib.h"
#include "stdlib.h"
#include "ff.h"
#include "diskio.h"
#include "pico_storage.h"
#include "msc_storage_driver.h"
#include "spi_sdmmc.h"
#include "hardware/rtc.h"
#include "inttypes.h"
#include "hardware/gpio.h"


#define SDMMC_DRV_0     0
sdmmc_data_t *pSDMMC=NULL;

//==================//
DSTATUS disk_initialize (BYTE drv){
    DSTATUS stat;
    switch (drv) {
        case SDMMC_DRV_0:
            if (pSDMMC == NULL) {
                pSDMMC = (sdmmc_data_t*)malloc(sizeof(sdmmc_data_t));
                pSDMMC->csPin = SDMMC_PIN_CS;
                pSDMMC->spiPort = SDMMC_SPI_PORT;
                pSDMMC->spiInit=false;
                pSDMMC->sectSize=512;
#ifdef __SPI_SDMMC_DMA
                pSDMMC->dmaInit=false;
#endif
             stat = sdmmc_disk_initialize(pSDMMC);
            return stat;
        } else {
            return RES_OK;
        }
           
        break;
        
    }
    return STA_NOINIT;
 }
/*-----------------------------------------------------------------------*/
/* Get disk status                                                       */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (BYTE drv) {
    DSTATUS stat;
    switch (drv) {
        case SDMMC_DRV_0:
            stat=  sdmmc_disk_status(pSDMMC); /* Return disk status */
            return stat;
        break;
        
    }
    return RES_PARERR;
	
}

/*-----------------------------------------------------------------------*/
/* Read sector(s)                                                        */
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
	BYTE drv,		/* Physical drive number (0) */
	BYTE *buff,		/* Pointer to the data buffer to store read data */
	LBA_t sector,	/* Start sector number (LBA) */
	UINT count		/* Number of sectors to read (1..128) */
)
{
    DSTATUS stat;
    switch (drv) {
        case SDMMC_DRV_0:
            stat = sdmmc_disk_read(buff, sector, count, pSDMMC);
            return stat;
        break;
        
    }
	return RES_PARERR;
}

/*-----------------------------------------------------------------------*/
/* Write sector(s)                                                       */
/*-----------------------------------------------------------------------*/
#if FF_FS_READONLY == 0
DRESULT disk_write (
	BYTE drv,			/* Physical drive number (0) */
	const BYTE *buff,	/* Ponter to the data to write */
	LBA_t sector,		/* Start sector number (LBA) */
	UINT count			/* Number of sectors to write (1..128) */
)
{
    DSTATUS stat = STA_NODISK;
    switch (drv) {
        case SDMMC_DRV_0:
            stat = sdmmc_disk_write(buff, sector, count, pSDMMC);
            return stat;
        break;
        
    }
	return RES_PARERR;

}
#endif


/*-----------------------------------------------------------------------*/
/* Miscellaneous drive controls other than data read/write               */
/*-----------------------------------------------------------------------*/

DRESULT disk_ioctl (
	BYTE drv,		/* Physical drive number (0) */
	BYTE cmd,		/* Control command code */
	void *buff		/* Pointer to the conrtol data */
)
{
    DSTATUS stat;
    switch (drv) {
        case SDMMC_DRV_0:
            stat = sdmmc_disk_ioctl(cmd, buff, pSDMMC);
            return stat;
        break;
        
    }
	return RES_PARERR;
}

DWORD get_fattime(void) {
    datetime_t t ;
    bool rc = rtc_get_datetime(&t);
    if (!rc) return 0;

    DWORD fattime = 0;
    // bit31:25
    // Year origin from the 1980 (0..127, e.g. 37 for 2017)
    uint32_t yr = t.year - 1980;
    fattime |= (yr & 0b01111111) << 25;
    // bit24:21
    // Month (1..12)
    uint32_t mo = t.month;
    fattime |= ( mo & 0b00001111) << 21;
    // bit20:16
    // Day of the month (1..31)
    uint32_t da = t.day;
    fattime |= (da & 0b00011111) << 16;
    // bit15:11
    // Hour (0..23)
    uint32_t hr = t.hour;
    fattime |= (hr & 0b00011111) << 11;
    // bit10:5
    // Minute (0..59)
    uint32_t mi = t.min;
    fattime |= ( mi&0b00111111) << 5;
    // bit4:0
    // Second / 2 (0..29, e.g. 25 for 50)
    uint32_t sd = t.sec / 2;
    fattime |= (sd&0b00011111);
    return fattime;
}

void led_blinking(void)
{
    static absolute_time_t  t1;
    static bool state=false;
        
    // Blink every interval ms
    if ( absolute_time_diff_us(t1, get_absolute_time()) < 100000) return; // not enough time
    t1 = get_absolute_time();
    gpio_put(LED_BLINKING_PIN, state);
    state = !state;
}

void led_blinking_off(void) {
    gpio_put(LED_BLINKING_PIN, false);
}

  • spi_sdmmc.c

/*
This library is derived from ChaN's FatFs - Generic FAT Filesystem Module.
*/
#include "stdio.h"
#include "stdlib.h"
#include "pico/stdlib.h"
#include "spi_sdmmc.h"
#include "msc_storage_driver.h"


#define SDMMC_CD 0 // card detect
#define SDMMC_WP 0 // write protected

static uint8_t dummy_block[SDMMC_SECT_SIZE];

void sdmmc_spi_cs_high(sdmmc_data_t *sdmmc);
void sdmmc_spi_cs_low(sdmmc_data_t *sdmmc);
static int sdmmc_wait_ready(uint timeout, sdmmc_data_t *sdmmc);
static void sdmmc_init_spi(sdmmc_data_t *sdmmc);

static void sdmmc_deselect(sdmmc_data_t *sdmmc)
{
	uint8_t src = 0xFF;
	sdmmc_spi_cs_high(sdmmc);
	spi_write_blocking(sdmmc->spiPort, &src, 1);
}

/*-----------------------------------------------------------------------*/
/* Select card and wait for ready                                        */
/*-----------------------------------------------------------------------*/
static int sdmmc_select(sdmmc_data_t *sdmmc) /* 1:OK, 0:Timeout */
{
	uint8_t src = 0xFF;
	sdmmc_spi_cs_low(sdmmc);
	spi_write_blocking(sdmmc->spiPort, &src, 1);
	if (sdmmc_wait_ready(500, sdmmc))
		return 1; /* Wait for card ready */
	sdmmc_deselect(sdmmc);
	return 0; /* Timeout */
}

uint64_t sdmmc_get_sector_count(sdmmc_data_t *sdmmc) {
	uint8_t n, csd[16];
	uint32_t st, ed, csize;

	uint64_t sectorCounter;

	uint8_t src = 0xFF;
	uint8_t sc = sdmmc_send_cmd(CMD9, 0, sdmmc);
	int rd = sdmmc_read_datablock(csd, 16, sdmmc);
	
	if ((sc == 0) && rd)
	{
		if ((csd[0] >> 6) == 1)
		{ /* SDC CSD ver 2 */
			csize = csd[9] + ((uint16_t)csd[8] << 8) + ((uint32_t)(csd[7] & 63) << 16) + 1;
			sectorCounter = csize << 10;
		}
		else
		{ /* SDC CSD ver 1 or MMC */
			n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
			csize = (csd[8] >> 6) + ((uint16_t)csd[7] << 2) + ((uint16_t)(csd[6] & 3) << 10) + 1;
			sectorCounter = csize << (n - 9);
		}
	
	} else {
		sectorCounter=0;
	}
	sdmmc_deselect(sdmmc);
	return sectorCounter;
}

uint32_t sdmmc_get_block_count(sdmmc_data_t *sdmmc) {
	uint8_t n, csd[16];
	uint32_t st, ed, csize;

	uint32_t sectorCounter=0;

	uint8_t src = 0xFF;

	if (sdmmc->cardType & CT_SDC2)
	{ /* SDC ver 2+ */
		if (sdmmc_send_cmd(ACMD13, 0, sdmmc) == 0)
		{ /* Read SD status */
			spi_write_blocking(sdmmc->spiPort, &src, 1);
			if (sdmmc_read_datablock(csd, 16, sdmmc))
			{ /* Read partial block */
				for (n = 64 - 16; n; n--)
					spi_write_blocking(sdmmc->spiPort, &src, 1); // xchg_spi(0xFF);	/* Purge trailing data */
				sectorCounter = 16UL << (csd[10] >> 4);
			}
		}
	}
	else
	{ /* SDC ver 1 or MMC */
		if ((sdmmc_send_cmd(CMD9, 0, sdmmc) == 0) && sdmmc_read_datablock(csd, 16, sdmmc))
		{ /* Read CSD */
			if (sdmmc->cardType & CT_SDC1)
			{ /* SDC ver 1.XX */
				sectorCounter = (((csd[10] & 63) << 1) + ((uint16_t)(csd[11] & 128) >> 7) + 1) << ((csd[13] >> 6) - 1);
			}
			else
			{ /* MMC */
				sectorCounter = ((uint16_t)((csd[10] & 124) >> 2) + 1) * (((csd[11] & 3) << 3) + ((csd[11] & 224) >> 5) + 1);
			}

		}
	}
	sdmmc_deselect(sdmmc);
	return sectorCounter;
}

uint8_t  msc_sdmmc_read_sector(uint32_t sector, uint8_t* buff, uint32_t len, sdmmc_data_t *sdmmc) {
	uint8_t ret=0;
	uint count;
	count = (len % sdmmc->sectSize)  ? ((len / sdmmc->sectSize) + 1) : (len / sdmmc->sectSize);
	
	if (!count)
		return ret; /* Check parameter */

	if (!(sdmmc->cardType & CT_BLOCK))
		sector *= sdmmc->sectSize; /* LBA ot BA conversion (byte addressing cards) */
	if (count == 1)
	{												  /* Single sector read */
		if ((sdmmc_send_cmd(CMD17, sector, sdmmc) == 0) /* READ_SINGLE_BLOCK */
			&& sdmmc_read_datablock(buff, sdmmc->sectSize, sdmmc))
		{
			ret = 1;
		}
led_blinking_task(); //// LED blinking
	}
	else
	{ /* Multiple sector read */
		if (sdmmc_send_cmd(CMD18, sector, sdmmc) == 0)
		{ /* READ_MULTIPLE_BLOCK */
			do
			{
				if (!sdmmc_read_datablock(buff, sdmmc->sectSize, sdmmc))
					break;
				buff += sdmmc->sectSize;
led_blinking_task(); //// LED blinking
			} while (--count);
			
			sdmmc_send_cmd(CMD12, 0, sdmmc); /* STOP_TRANSMISSION */
			ret = 1;
		}
	}
led_blinking_task_off();  //// LED blinking off
	sdmmc_deselect(sdmmc); // sdmmc_select() is called in function sdmmc_send_cmd()

	return ret;
}

uint8_t msc_sdmmc_write_sector(uint32_t sector, uint8_t *buff, uint32_t len, sdmmc_data_t *sdmmc) {

	uint8_t ret=0;
	uint count;
	count = (len % sdmmc->sectSize)  ? ((len / sdmmc->sectSize)+1) : (len / sdmmc->sectSize);

	if (!count)
		return ret; /* Check parameter */
	//if (sdmmc->Stat & STA_NOINIT)
	//	return RES_NOTRDY; /* Check drive status */
	//if (sdmmc->Stat & STA_PROTECT)
	//	return RES_WRPRT; /* Check write protect */

	if (!(sdmmc->cardType & CT_BLOCK))
		sector *= sdmmc->sectSize; /* LBA ==> BA conversion (byte addressing cards) */

	if (count == 1)
	{												  /* Single sector write */
		if ((sdmmc_send_cmd(CMD24, sector, sdmmc) == 0) /* WRITE_BLOCK */
			&& sdmmc_write_datablock(buff, 0xFE, sdmmc))
		{
			ret = 1;
		}
led_blinking_task();  //// LED_blinking
	}
	else
	{ /* Multiple sector write */
		if (sdmmc->cardType & CT_SDC)
			sdmmc_send_cmd(ACMD23, count, sdmmc); /* Predefine number of sectors */
		if (sdmmc_send_cmd(CMD25, sector, sdmmc) == 0)
		{ /* WRITE_MULTIPLE_BLOCK */
			do
			{
				if (!sdmmc_write_datablock(buff, 0xFC, sdmmc))
					break;
				buff += sdmmc->sectSize;

led_blinking_task();  //// LED_blinking
			} while (--count);
			  // LED blinking off
			if (!sdmmc_write_datablock(0, 0xFD, sdmmc))
				count = 1; /* STOP_TRAN token */
			ret =1;
		}
	}
led_blinking_task_off();
	sdmmc_deselect(sdmmc); // sdmmc_select() is called in function sdmmc_send_cmd

}

/* sdmmc spi port initialize*/
void sdmmc_spi_port_init(sdmmc_data_t *sdmmc)
{
	sdmmc->spiPort = SDMMC_SPI_PORT;
	sdmmc->csPin = SDMMC_PIN_CS;
	spi_init(sdmmc->spiPort, SPI_BAUDRATE_LOW);
	gpio_set_function(SDMMC_PIN_MISO, GPIO_FUNC_SPI);
	gpio_set_function(sdmmc->csPin, GPIO_FUNC_SIO);
	gpio_set_function(SDMMC_PIN_SCK, GPIO_FUNC_SPI);
	gpio_set_function(SDMMC_PIN_MOSI, GPIO_FUNC_SPI);
	gpio_set_dir(sdmmc->csPin, GPIO_OUT);
	gpio_put(sdmmc->csPin, 1); // deselect

	sdmmc->spiInit = true; // alreadily initialized
}

/* config spi dma*/
#ifdef __SPI_SDMMC_DMA
void config_spi_dma(sdmmc_data_t *sdmmc)
{
	sdmmc->read_dma_ch = dma_claim_unused_channel(true);
	sdmmc->write_dma_ch = dma_claim_unused_channel(true);
	sdmmc->dma_rc = dma_channel_get_default_config(sdmmc->read_dma_ch);
	sdmmc->dma_wc = dma_channel_get_default_config(sdmmc->write_dma_ch);
	channel_config_set_transfer_data_size(&(sdmmc->dma_rc), DMA_SIZE_8);
	channel_config_set_transfer_data_size(&(sdmmc->dma_wc), DMA_SIZE_8);
	channel_config_set_read_increment(&(sdmmc->dma_rc), false);
	channel_config_set_write_increment(&(sdmmc->dma_rc), true);
	channel_config_set_read_increment(&(sdmmc->dma_wc), true);
	channel_config_set_write_increment(&(sdmmc->dma_wc), false);
	channel_config_set_dreq(&(sdmmc->dma_rc), spi_get_dreq(sdmmc->spiPort, false));
	channel_config_set_dreq(&(sdmmc->dma_wc), spi_get_dreq(sdmmc->spiPort, true));

	for (int i = 0; i < SDMMC_SECT_SIZE; i++)
		dummy_block[i] = 0xFF;

	dma_channel_configure(sdmmc->read_dma_ch,
						  &(sdmmc->dma_rc),
						  NULL,
						  &spi_get_hw(sdmmc->spiPort)->dr,
						  sdmmc->sectSize, false);
	dma_channel_configure(sdmmc->write_dma_ch,
						  &(sdmmc->dma_wc),
						  &spi_get_hw(sdmmc->spiPort)->dr,
						  NULL,
						  sdmmc->sectSize, false);
	sdmmc->dmaInit = true;
}
#endif

/* set spi cs low (select)*/
void sdmmc_spi_cs_low(sdmmc_data_t *sdmmc)
{
	gpio_put(sdmmc->csPin, 0);
}
/* set spi cs high (deselect)*/
void sdmmc_spi_cs_high(sdmmc_data_t *sdmmc)
{
	gpio_put(sdmmc->csPin, 1);
}
/* Initialize SDMMC SPI interface */
static void sdmmc_init_spi(sdmmc_data_t *sdmmc)
{
	sdmmc_spi_port_init(sdmmc); // if not initialized, init it
#ifdef __SPI_SDMMC_DMA
	if (!sdmmc->dmaInit)
		config_spi_dma(sdmmc);
#endif

	sleep_ms(10);
}

/* Receive a sector data (512 uint8_ts) */
static void sdmmc_read_spi_dma(
	uint8_t *buff, /* Pointer to data buffer */
	uint btr,	/* Number of uint8_ts to receive (even number) */
	sdmmc_data_t *sdmmc)
{
#ifdef __SPI_SDMMC_DMA
	dma_channel_set_read_addr(sdmmc->write_dma_ch, dummy_block, false);
	dma_channel_set_trans_count(sdmmc->write_dma_ch, btr, false);

	dma_channel_set_write_addr(sdmmc->read_dma_ch, buff, false);
	dma_channel_set_trans_count(sdmmc->read_dma_ch, btr, false);

	dma_start_channel_mask((1u << (sdmmc->read_dma_ch)) | (1u << (sdmmc->write_dma_ch)));
	dma_channel_wait_for_finish_blocking(sdmmc->read_dma_ch);
#else
	spi_read_blocking(sdmmc->spiPort, 0xFF, buff, btr);
#endif
}


/* Send a sector data (512 uint8_ts) */
static void sdmmc_write_spi_dma(
	const uint8_t *buff, /* Pointer to the data */
	uint btx,		  /* Number of uint8_ts to send (even number) */
	sdmmc_data_t *sdmmc)
{
#ifdef __SPI_SDMMC_DMA
	dma_channel_set_read_addr(sdmmc->write_dma_ch, buff, false);
	dma_channel_set_trans_count(sdmmc->write_dma_ch, btx, false);
	dma_channel_start(sdmmc->write_dma_ch);
	dma_channel_wait_for_finish_blocking(sdmmc->write_dma_ch);
#else
	spi_write_blocking(sdmmc->spiPort, buff, btx);
#endif
}


/*-----------------------------------------------------------------------*/
/* Wait for card ready                                                   */
/*-----------------------------------------------------------------------*/
static int sdmmc_wait_ready(uint timeout, sdmmc_data_t *sdmmc)
{
	uint8_t dst;
	absolute_time_t timeout_time = make_timeout_time_ms(timeout);
	do
	{
		spi_read_blocking(sdmmc->spiPort, 0xFF, &dst, 1);
	} while (dst != 0xFF && 0 < absolute_time_diff_us(get_absolute_time(), timeout_time)); /* Wait for card goes ready or timeout */

	return (dst == 0xFF) ? 1 : 0;
}

/*-----------------------------------------------------------------------*/
/* Deselect card and release SPI                                         */
/*-----------------------------------------------------------------------*/


/*-----------------------------------------------------------------------*/
/* Receive a data packet from the MMC                                    */
/*-----------------------------------------------------------------------*/
// static
int sdmmc_read_datablock(			 /* 1:OK, 0:Error */
						 uint8_t *buff, /* Data buffer */
						 uint btr,	 /* Data block length (uint8_t) */
						 sdmmc_data_t *sdmmc)
{
	uint8_t token;
	absolute_time_t timeout_time = make_timeout_time_ms(200);
	do
	{ /* Wait for DataStart token in timeout of 200ms */
		spi_read_blocking(sdmmc->spiPort, 0xFF, &token, 1);
		
	} while ((token == 0xFF) && 0 < absolute_time_diff_us(get_absolute_time(), timeout_time));
	if (token != 0xFE)
		return 0; /* Function fails if invalid DataStart token or timeout */

	sdmmc_read_spi_dma(buff, btr, sdmmc);
	// Discard CRC
	spi_read_blocking(sdmmc->spiPort, 0xFF, &token, 1);
	spi_read_blocking(sdmmc->spiPort, 0xFF, &token, 1);
	return 1; // Function succeeded
}

/*-----------------------------------------------------------------------*/
/* Send a data packet to the MMC                                         */
/*-----------------------------------------------------------------------*/
//#if FF_FS_READONLY == 0
// static
int sdmmc_write_datablock(					/* 1:OK, 0:Failed */
						  const uint8_t *buff, /* Ponter to 512 uint8_t data to be sent */
						  uint8_t token,		/* Token */
						  sdmmc_data_t *sdmmc)
{
	uint8_t resp;
	if (!sdmmc_wait_ready(500, sdmmc))
		return 0; /* Wait for card ready */
	// Send token : 0xFE--single block, 0xFC -- multiple block write start, 0xFD -- StopTrans
	spi_write_blocking(sdmmc->spiPort, &token, 1);
	if (token != 0xFD)
	{										   /* Send data if token is other than StopTran */
		sdmmc_write_spi_dma(buff, sdmmc->sectSize, sdmmc); /* Data */

		token = 0xFF;
		spi_write_blocking(sdmmc->spiPort, &token, 1); // Dummy CRC
		spi_write_blocking(sdmmc->spiPort, &token, 1);

		spi_read_blocking(sdmmc->spiPort, 0xFF, &resp, 1);
		// receive response token: 0x05 -- accepted, 0x0B -- CRC error, 0x0C -- Write Error
		if ((resp & 0x1F) != 0x05)
			return 0; /* Function fails if the data packet was not accepted */
	}
	return 1;
}
//#endif

/*-----------------------------------------------------------------------*/
/* Send a command packet to the MMC                                      */
/*-----------------------------------------------------------------------*/
//static
uint8_t sdmmc_send_cmd(			  /* Return value: R1 resp (bit7==1:Failed to send) */
						   uint8_t cmd,  /* Command index */
						   uint32_t arg, /* Argument */
						   sdmmc_data_t *sdmmc)
{
	uint8_t n, res;
	uint8_t tcmd[5];

	if (cmd & 0x80)
	{ /* Send a CMD55 prior to ACMD */
		cmd &= 0x7F;
		res = sdmmc_send_cmd(CMD55, 0, sdmmc);
		if (res > 1)
			return res;
	}

	/* Select the card and wait for ready except to stop multiple block read */
	if (cmd != CMD12)
	{
		sdmmc_deselect(sdmmc);
		if (!sdmmc_select(sdmmc))
			return 0xFF;
	}

	/* Send command packet */
	tcmd[0] = 0x40 | cmd;		 // 0 1 cmd-index(6) --> 01xxxxxx(b)
	tcmd[1] = (uint8_t)(arg >> 24); // 32 bits argument
	tcmd[2] = (uint8_t)(arg >> 16);
	tcmd[3] = (uint8_t)(arg >> 8);
	tcmd[4] = (uint8_t)arg;
	spi_write_blocking(sdmmc->spiPort, tcmd, 5);
	n = 0x01; /* Dummy CRC + Stop */
	if (cmd == CMD0)
		n = 0x95; /* Valid CRC for CMD0(0) */
	if (cmd == CMD8)
		n = 0x87; /* Valid CRC for CMD8(0x1AA) */

	spi_write_blocking(sdmmc->spiPort, &n, 1);

	/* Receive command resp */
	if (cmd == CMD12)
		spi_read_blocking(sdmmc->spiPort, 0xFF, &res, 1); /* Diacard following one uint8_t when CMD12 */
	n = 10;												  /* Wait for response (10 uint8_ts max) */
	do
	{
		spi_read_blocking(sdmmc->spiPort, 0xFF, &res, 1);
	} while ((res & 0x80) && --n);

	return res; /* Return received response */
}

/*-----------------------------------------------------------------------*/
/* Initialize disk drive                                                 */
/*-----------------------------------------------------------------------*/
uint8_t sdmmc_init(sdmmc_data_t *sdmmc)
{
	uint8_t n, cmd, ty, src, ocr[4];

	sdmmc->Stat = RES_OK;
	// low baudrate
	spi_set_baudrate(sdmmc->spiPort, SPI_BAUDRATE_LOW);
	src = 0xFF;
	sdmmc_spi_cs_low(sdmmc);
	for (n = 10; n; n--)
		spi_write_blocking(sdmmc->spiPort, &src, 1); // Send 80 dummy clocks
	sdmmc_spi_cs_high(sdmmc);

	ty = 0;
	if (sdmmc_send_cmd(CMD0, 0, sdmmc) == 1)
	{ /* Put the card SPI/Idle state, R1 bit0=1*/
		absolute_time_t timeout_time = make_timeout_time_ms(1000);
		if (sdmmc_send_cmd(CMD8, 0x1AA, sdmmc) == 1)
		{													 /* SDv2? */
			spi_read_blocking(sdmmc->spiPort, 0xFF, ocr, 4); // R7(5 uint8_ts): R1 read by sdmmc_send_cmd, Get the other 32 bit return value of R7 resp
			if (ocr[2] == 0x01 && ocr[3] == 0xAA)
			{ /* Is the card supports vcc of 2.7-3.6V? */
				while ((0 < absolute_time_diff_us(get_absolute_time(), timeout_time)) && sdmmc_send_cmd(ACMD41, 1UL << 30, sdmmc))
					; /* Wait for end of initialization with ACMD41(HCS) */
				if ((0 < absolute_time_diff_us(get_absolute_time(), timeout_time)) && sdmmc_send_cmd(CMD58, 0, sdmmc) == 0)
				{ /* Check CCS bit in the OCR */
					spi_read_blocking(sdmmc->spiPort, 0xFF, ocr, 4);
					ty = (ocr[0] & 0x40) ? CT_SDC2 | CT_BLOCK : CT_SDC2; /* Card id SDv2 */
				}
			}
		}
		else
		{ /* Not SDv2 card */
			if (sdmmc_send_cmd(ACMD41, 0, sdmmc) <= 1)
			{ /* SDv1 or MMC? */
				ty = CT_SDC1;
				cmd = ACMD41; /* SDv1 (ACMD41(0)) */
			}
			else
			{
				ty = CT_MMC3;
				cmd = CMD1; /* MMCv3 (CMD1(0)) */
			}
			while ((0 < absolute_time_diff_us(get_absolute_time(), timeout_time)) && sdmmc_send_cmd(cmd, 0, sdmmc))
				;																										   /* Wait for end of initialization */
			if (!(0 < absolute_time_diff_us(get_absolute_time(), timeout_time)) || sdmmc_send_cmd(CMD16, SDMMC_SECT_SIZE, sdmmc) != 0) /* Set block length: 512 */
				ty = 0;
		}
	}
	sdmmc->cardType = ty; /* Card type */
	sdmmc_deselect(sdmmc);
	if (ty)
	{ /* OK */
		// high baudrate
		printf("\nThe actual baudrate(SD/MMC):%d\n",spi_set_baudrate(sdmmc->spiPort, SPI_BAUDRATE_HIGH)); // speed high
		sdmmc->sectSize = SDMMC_SECT_SIZE;
		sdmmc->Stat = RES_OK; /* Clear STA_NOINIT flag */
	}
	else
	{ /* Failed */
		sdmmc->Stat = STA_NOINIT;
	}
	sdmmc->sectCount = sdmmc_get_sector_count(sdmmc);
	return sdmmc->Stat;
}
/////////////////////////////////////////////
/* sdmmc_disk_initialize*/
DSTATUS sdmmc_disk_initialize(sdmmc_data_t *sdmmc)
{
	if (!sdmmc->spiInit)
		sdmmc_init_spi(sdmmc); /* Initialize SPI */
	DSTATUS stat = sdmmc_init(sdmmc);

	return stat;
}
/* sdmmc disk status*/
DSTATUS sdmmc_disk_status(sdmmc_data_t *sdmmc)
{
	return sdmmc->Stat;
}

/* sdmmc disk read*/
DSTATUS sdmmc_disk_read(
	BYTE *buff,	  /* Pointer to the data buffer to store read data */
	LBA_t sector, /* Start sector number (LBA) */
	UINT count,	  /* Number of sectors to read (1..128) */
	sdmmc_data_t *sdmmc)
{
	DWORD sect = (DWORD)(sector);

	if (!count)
		return RES_PARERR; /* Check parameter */
	if (sdmmc->Stat & STA_NOINIT)
		return RES_NOTRDY; /* Check if drive is ready */

	if (!(sdmmc->cardType & CT_BLOCK))
		sect *= 512; /* LBA ot BA conversion (byte addressing cards) */
	if (count == 1)
	{												  /* Single sector read */
		if ((sdmmc_send_cmd(CMD17, sect, sdmmc) == 0) /* READ_SINGLE_BLOCK */
			&& sdmmc_read_datablock(buff, 512, sdmmc))
		{
			count = 0;
		}
		//led_blinking(); //// LED blinking
	}
	else
	{ /* Multiple sector read */
		if (sdmmc_send_cmd(CMD18, sect, sdmmc) == 0)
		{ /* READ_MULTIPLE_BLOCK */
			do
			{
				if (!sdmmc_read_datablock(buff, 512, sdmmc))
					break;
				buff += 512;
				//led_blinking(); //// LED blinking
			} while (--count);
			
			sdmmc_send_cmd(CMD12, 0, sdmmc); /* STOP_TRANSMISSION */
		}
	}
	//led_blinking_off();  //// LED blinking off
	sdmmc_deselect(sdmmc); // sdmmc_select() is called in function sdmmc_send_cmd()

	return count ? RES_ERROR : RES_OK; /* Return result */
}

DSTATUS sdmmc_disk_write(
	const BYTE *buff, /* Ponter to the data to write */
	LBA_t sector,	  /* Start sector number (LBA) */
	UINT count,		  /* Number of sectors to write (1..128) */
	sdmmc_data_t *sdmmc)
{
	DWORD sect = (DWORD)sector;
	if (!count)
		return RES_PARERR; /* Check parameter */
	if (sdmmc->Stat & STA_NOINIT)
		return RES_NOTRDY; /* Check drive status */
	if (sdmmc->Stat & STA_PROTECT)
		return RES_WRPRT; /* Check write protect */

	if (!(sdmmc->cardType & CT_BLOCK))
		sect *= 512; /* LBA ==> BA conversion (byte addressing cards) */

	if (count == 1)
	{												  /* Single sector write */
		if ((sdmmc_send_cmd(CMD24, sect, sdmmc) == 0) /* WRITE_BLOCK */
			&& sdmmc_write_datablock(buff, 0xFE, sdmmc))
		{
			count = 0;
		}
		//led_blinking();  //// LED_blinking
	}
	else
	{ /* Multiple sector write */
		if (sdmmc->cardType & CT_SDC)
			sdmmc_send_cmd(ACMD23, count, sdmmc); /* Predefine number of sectors */
		if (sdmmc_send_cmd(CMD25, sect, sdmmc) == 0)
		{ /* WRITE_MULTIPLE_BLOCK */
			do
			{
				if (!sdmmc_write_datablock(buff, 0xFC, sdmmc))
					break;
				buff += 512;

				//led_blinking();  //// LED_blinking
			} while (--count);
			  // LED blinking off
			if (!sdmmc_write_datablock(0, 0xFD, sdmmc))
				count = 1; /* STOP_TRAN token */
		}
	}
	//led_blinking_off();
	sdmmc_deselect(sdmmc); // sdmmc_select() is called in function sdmmc_send_cmd

	return count ? RES_ERROR : RES_OK; /* Return result */
}

/* sdmmc disk ioctl*/
DSTATUS sdmmc_disk_ioctl(
	BYTE cmd,	/* Control command code */
	void *buff, /* Pointer to the conrtol data */
	sdmmc_data_t *sdmmc)
{
	DRESULT res;
	BYTE n, csd[16];
	DWORD st, ed, csize;
	LBA_t *dp;

	BYTE src = 0xFF;

	if (sdmmc->Stat & STA_NOINIT)
		return RES_NOTRDY; /* Check if drive is ready */

	res = RES_ERROR;
	switch (cmd)
	{
	case CTRL_SYNC: /* Wait for end of internal write process of the drive */
		if (sdmmc_select(sdmmc))
			res = RES_OK;
		break;
	case GET_SECTOR_COUNT: /* Get drive capacity in unit of sector (DWORD) */
		if ((sdmmc_send_cmd(CMD9, 0, sdmmc) == 0) && sdmmc_read_datablock(csd, 16, sdmmc))
		{
			if ((csd[0] >> 6) == 1)
			{ /* SDC CSD ver 2 */
				csize = csd[9] + ((WORD)csd[8] << 8) + ((DWORD)(csd[7] & 63) << 16) + 1;
				*(LBA_t *)buff = csize << 10;
			}
			else
			{ /* SDC CSD ver 1 or MMC */
				n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
				csize = (csd[8] >> 6) + ((WORD)csd[7] << 2) + ((WORD)(csd[6] & 3) << 10) + 1;
				*(LBA_t *)buff = csize << (n - 9);
			}
			res = RES_OK;
		}
		break;
	case GET_SECTOR_SIZE: // FF_MAX_SS != FX_MIN_SS
		//*(WORD*)buff=512; // SDHC, SDXC sector size is 512
		*(WORD *)buff = sdmmc->sectSize;

		res = RES_OK;
		break;
	case GET_BLOCK_SIZE: /* Get erase block size in unit of sector (DWORD) */
		if (sdmmc->cardType & CT_SDC2)
		{ /* SDC ver 2+ */
			if (sdmmc_send_cmd(ACMD13, 0, sdmmc) == 0)
			{ /* Read SD status */
				spi_write_blocking(sdmmc->spiPort, &src, 1);
				if (sdmmc_read_datablock(csd, 16, sdmmc))
				{ /* Read partial block */
					for (n = 64 - 16; n; n--)
						spi_write_blocking(sdmmc->spiPort, &src, 1); // xchg_spi(0xFF);	/* Purge trailing data */
					*(DWORD *)buff = 16UL << (csd[10] >> 4);
					res = RES_OK;
				}
			}
		}
		else
		{ /* SDC ver 1 or MMC */
			if ((sdmmc_send_cmd(CMD9, 0, sdmmc) == 0) && sdmmc_read_datablock(csd, 16, sdmmc))
			{ /* Read CSD */
				if (sdmmc->cardType & CT_SDC1)
				{ /* SDC ver 1.XX */
					*(DWORD *)buff = (((csd[10] & 63) << 1) + ((WORD)(csd[11] & 128) >> 7) + 1) << ((csd[13] >> 6) - 1);
				}
				else
				{ /* MMC */
					*(DWORD *)buff = ((WORD)((csd[10] & 124) >> 2) + 1) * (((csd[11] & 3) << 3) + ((csd[11] & 224) >> 5) + 1);
				}
				res = RES_OK;
			}
		}
		break;

	case CTRL_TRIM: /* Erase a block of sectors (used when _USE_ERASE == 1) */
		if (!(sdmmc->cardType & CT_SDC))
			break; /* Check if the card is SDC */
		if (sdmmc_disk_ioctl(MMC_GET_CSD, csd, sdmmc))
			break; /* Get CSD */
		if (!(csd[10] & 0x40))
			break; /* Check if ERASE_BLK_EN = 1 */
		dp = buff;
		st = (DWORD)dp[0];
		ed = (DWORD)dp[1]; /* Load sector block */
		if (!(sdmmc->cardType & CT_BLOCK))
		{
			st *= 512;
			ed *= 512;
		}
		if (sdmmc_send_cmd(CMD32, st, sdmmc) == 0 && sdmmc_send_cmd(CMD33, ed, sdmmc) == 0 && sdmmc_send_cmd(CMD38, 0, sdmmc) == 0 && sdmmc_wait_ready(30000, sdmmc))
		{				  /* Erase sector block */
			res = RES_OK; /* FatFs does not check result of this command */
		}
		break;

		/* Following commands are never used by FatFs module */

	case MMC_GET_TYPE: /* Get MMC/SDC type (BYTE) */
		*(BYTE *)buff = sdmmc->cardType;
		res = RES_OK;
		break;

	case MMC_GET_CSD: /* Read CSD (16 bytes) */
		if (sdmmc_send_cmd(CMD9, 0, sdmmc) == 0 && sdmmc_read_datablock((BYTE *)buff, 16, sdmmc))
		{ /* READ_CSD */
			res = RES_OK;
		}
		break;

	case MMC_GET_CID: /* Read CID (16 bytes) */
		if (sdmmc_send_cmd(CMD10, 0, sdmmc) == 0 && sdmmc_read_datablock((BYTE *)buff, 16, sdmmc))
		{ /* READ_CID */
			res = RES_OK;
		}
		break;

	case MMC_GET_OCR: /* Read OCR (4 bytes) */
		if (sdmmc_send_cmd(CMD58, 0, sdmmc) == 0)
		{ /* READ_OCR */
			for (n = 0; n < 4; n++)
				*(((BYTE *)buff) + n) = spi_write_blocking(sdmmc->spiPort, &src, 1); // xchg_spi(0xFF);
			res = RES_OK;
		}
		break;

	case MMC_GET_SDSTAT: /* Read SD status (64 bytes) */
		if (sdmmc_send_cmd(ACMD13, 0, sdmmc) == 0)
		{ /* SD_STATUS */
			spi_write_blocking(sdmmc->spiPort, &src, 1);
			if (sdmmc_read_datablock((BYTE *)buff, 64, sdmmc))
				res = RES_OK;
		}
		break;

	default:
		res = RES_PARERR;
	}

	sdmmc_deselect(sdmmc); // sdmmc_select() is called in function sdmmc_send_cmd()

	return res;
}


  • msc_device_disk.c

/* this file was modified from tinyUSB example: msc_disk_dual.c*/

/* 
 * The MIT License (MIT)
 *
 * Copyright (c) 2019 Ha Thach (tinyusb.org)
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
#include "bsp/board.h"
#include "tusb.h"
#include "stdlib.h"

#include "spi_sdmmc.h"
#include "hardware/gpio.h"
#include "msc_storage_driver.h"

extern sdmmc_data_t *pSDMMC;

void storage_driver_init() {
  if (pSDMMC == NULL) {
      // SDMMC driver initialize
      pSDMMC = (sdmmc_data_t*)malloc(sizeof(sdmmc_data_t));
      pSDMMC->spiInit=false;
#ifdef __SPI_SDMMC_DMA
      pSDMMC->dmaInit=false;
#endif
      sdmmc_disk_initialize(pSDMMC);
  }
  sleep_ms(10);
  // LED blinking when reading/writing
  gpio_init(LED_BLINKING_PIN);
  gpio_set_dir(LED_BLINKING_PIN, true);
}

#if CFG_TUD_MSC

// Invoked to determine max LUN
uint8_t tud_msc_get_maxlun_cb(void)
{
  return 1; // LUN 0: SDMMC, LUN 1: W25Q Flash
}

// Invoked when received SCSI_CMD_INQUIRY
// Application fill vendor id, product id and revision with string up to 8, 16, 4 characters respectively
void tud_msc_inquiry_cb(uint8_t lun, uint8_t vendor_id[8], uint8_t product_id[16], uint8_t product_rev[4])
{
  switch (lun) {
    case SDMMC_LUN:
      sprintf(vendor_id  , "SDMMC");
      sprintf(product_id , "Mass Storage");
      sprintf(product_rev, "1.0");
    break;
  }
 
}

// Invoked when received Test Unit Ready command.
// return true allowing host to read/write this LUN e.g SD card inserted
bool tud_msc_test_unit_ready_cb(uint8_t lun)
{
  //if ( lun == 1 && board_button_read() ) return false;

  return true; // RAM disk is always ready
}

// Invoked when received SCSI_CMD_READ_CAPACITY_10 and SCSI_CMD_READ_FORMAT_CAPACITY to determine the disk size
// Application update block count and block size
void tud_msc_capacity_cb(uint8_t lun, uint32_t* block_count, uint16_t* block_size)
{
  switch(lun) {
    case SDMMC_LUN:
        *block_count = pSDMMC->sectCount;
        *block_size  = pSDMMC->sectSize;
    break;

  }
}

// Invoked when received Start Stop Unit command
// - Start = 0 : stopped power mode, if load_eject = 1 : unload disk storage
// - Start = 1 : active mode, if load_eject = 1 : load disk storage
bool tud_msc_start_stop_cb(uint8_t lun, uint8_t power_condition, bool start, bool load_eject)
{
  
  (void) lun;
  (void) power_condition;

  if ( load_eject )
  {
    if (start)
    {
printf("start\n");
      // load disk storage
    }else
    {
printf("stop\n");
      // unload disk storage
    }
  }

  return true;
}

// Callback invoked when received READ10 command.
// Copy disk's data to buffer (up to bufsize) and return number of copied bytes.
int32_t tud_msc_read10_cb(uint8_t lun, uint32_t lba, uint32_t offset, void* buffer, uint32_t bufsize)
{
  switch(lun) {
    case SDMMC_LUN:
      if (!msc_sdmmc_read_sector(lba, buffer, bufsize, pSDMMC)) return -1;
    break;

  }
  return (int32_t) bufsize;
}

bool tud_msc_is_writable_cb (uint8_t lun)
{
  (void) lun;

#ifdef CFG_EXAMPLE_MSC_READONLY
  return false;
#else
  return true;
#endif
}

// Callback invoked when received WRITE10 command.
// Process data in buffer to disk's storage and return number of written bytes
int32_t tud_msc_write10_cb(uint8_t lun, uint32_t lba, uint32_t offset, uint8_t* buffer, uint32_t bufsize)
{

  switch (lun) {
    case SDMMC_LUN:
        if (!msc_sdmmc_write_sector(lba, buffer, bufsize, pSDMMC)) return -1;
    break;
  }
  

  return (int32_t) bufsize;
}

// Callback invoked when received an SCSI command not in built-in list below
// - READ_CAPACITY10, READ_FORMAT_CAPACITY, INQUIRY, MODE_SENSE6, REQUEST_SENSE
// - READ10 and WRITE10 has their own callbacks
int32_t tud_msc_scsi_cb (uint8_t lun, uint8_t const scsi_cmd[16], void* buffer, uint16_t bufsize)
{
  // read10 & write10 has their own callback and MUST not be handled here

  void const* response = NULL;
  int32_t resplen = 0;

  // most scsi handled is input
  bool in_xfer = true;

  switch (scsi_cmd[0])
  {
    default:
      // Set Sense = Invalid Command Operation
      tud_msc_set_sense(lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00);

      // negative means error -> tinyusb could stall and/or response with failed status
      resplen = -1;
    break;
  }

  // return resplen must not larger than bufsize
  if ( resplen > bufsize ) resplen = bufsize;

  if ( response && (resplen > 0) )
  {
    if(in_xfer)
    {
      memcpy(buffer, response, (size_t) resplen);
    }else
    {
      // SCSI output
    }
  }

  return resplen;
}

#endif

void led_blinking_task(void)
{
  static uint32_t start_ms = 0;
  static bool led_state = false;

  // Blink every interval ms
  if ( board_millis() - start_ms < 50) return; // not enough time
  start_ms += 50;

  gpio_put(LED_BLINKING_PIN,led_state);
  led_state = 1 - led_state; // toggle
}

void led_blinking_task_off(void) {
  gpio_put(LED_BLINKING_PIN,false);
}

  • main.c


#include 
#include 
#include 
#include "pico/stdlib.h"

#include "bsp/board.h"
#include "tusb.h"

#include "msc_storage_driver.h"

#include "pico_storage.h"
#include "hardware/rtc.h"
#include "pico_audio_recorder.h"


/*------------- MAIN -------------*/
int main(void)
{
  stdio_init_all();
  rtc_init();

  datetime_t t = {
    .year=2023, .month=10, .day=29, 
    .dotw=6,
    .hour=14, .min=05, .sec=50
  }; 
  
   if (!rtc_set_datetime(&t)) printf("set rtc error\n");
     
  storage_driver_init();
  
  board_init();
  // init device stack on configured roothub port
  tud_init(BOARD_TUD_RHPORT);

  inmp441_pio_init(INMP441_pio, INMP441_SM, INMP441_SD, INMP441_SCK);

  while (1)
  {
      if (get_recorder_state() == STATE_START_RECORDING) {
        printf("Start recording\n");
        inmp441_starting_recording_to_file_wav();
      }
    
             
      tud_task(); // tinyusb device task
      tight_loop_contents();
  }

  return 0;
}

  • CMakeLists.txt(root)

# Generated Cmake Pico project file

cmake_minimum_required(VERSION 3.13)

set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)

# Initialise pico_sdk from installed location
# (note this can come from environment, CMake cache etc)
set(PICO_SDK_PATH "/home/duser/pico/pico-sdk")

set(PICO_BOARD pico CACHE STRING "Board type")

# Pull in Raspberry Pi Pico SDK (must be before project)
include(pico_sdk_import.cmake)

if (PICO_SDK_VERSION_STRING VERSION_LESS "1.4.0")
  message(FATAL_ERROR "Raspberry Pi Pico SDK version 1.4.0 (or later) required. Your version is ${PICO_SDK_VERSION_STRING}")
endif()

project(audio_recorder C CXX ASM)

# Initialise the Raspberry Pi Pico SDK
pico_sdk_init()

# Add executable. Default name is the project name, version 0.1

add_executable(audio_recorder 
        main.c 
        usb_descriptors.c)

pico_set_program_name(audio_recorder "pico_audio_recotr")
pico_set_program_version(audio_recorder "0.1")

pico_enable_stdio_uart(audio_recorder 1)
pico_enable_stdio_usb(audio_recorder 0)

# Add the standard library to the build
target_link_libraries(audio_recorder
        pico_stdlib)

# Add the standard include files to the build
target_include_directories(audio_recorder PRIVATE
  ${CMAKE_CURRENT_LIST_DIR}
  ${CMAKE_CURRENT_LIST_DIR}/.. # for our common lwipopts or any other standard includes, if required
)

# Add any user requested libraries
target_link_libraries(audio_recorder 
        hardware_dma
        hardware_pio
        pico_multicore
        pico_util
        )
add_subdirectory(storage_driver)
# Add any user requested libraries
target_link_libraries(audio_recorder 
        tinyusb_device 
        tinyusb_board
        storage_driver
        )
add_subdirectory(pico_audio_recorder)
# Add any user requested libraries
target_link_libraries(audio_recorder 
               pico_audio_recorder
        )

pico_add_extra_outputs(audio_recorder)


1 則留言:

  1. Hi! Greetings from Ensenada, Mexico. I found your entry very interesting and would like to know if you are available to share your code in a zip file or GitHub page. I am working on a personal project to create multiple audio processing filters using RP2040 and probably make use of the pio code, and would like to use your code as a reference. Thanks!

    回覆刪除