本文章介紹Raspberry Pi Pico 的nRF24L01(+) C code驅動程式製作,以利於在Pico SDK開發環境下使用。
本驅動程式需要使用nRF24L01(+)上的IRQ pin。
當有Payload發送或接收後觸發interrupt,取代polling以節省CPU時間。
一、nRF24L01產品規格簡要介紹與使用驅動程式相對應指令。
- 收發角色:
Primary Transmitter(PTX):發送角色。
Primary Receiver(PRX): 接收角色。
使用本驅動程式function:
nRF24_config_mode(role) 1: PRX, 0:PTX。 - 定址方式:分為3,4或5byte長度,在REGISTER SETUP_AW(0x03)中定義。
nRF24_set_address_width(uint8_t aw)
RX Address:共有6 data pipes,意即可同時接收6 個data pipes,在RX_ADDR_P0(0x0A)、RX_ADDR_P1(0x0B)、RX_ADDR_P2(0x0C)、RX_ADDR_P3(0x0D)、RX_ADDR_P4(0x0E)、RX_ADDR_P5(0x0F)中定義,RX_ADDR_P2~P5 register為一個byte長度,高位元4bytes同RX_ADDR_P1。如下圖所示。
function:
nRF24_set_RX_addr(uint8_t data_pipe, uint8_t *addr, uint8_t len);
TX address:一般定義同為RX_ADDR_P0。
nRF24_set_TX_addr(uint8_t *addr, uint8_t len);(source from nRF24L01 Product Specification)PTX與PRX如下圖:(source from nRF24L01 Product Specification) - 傳送資料格式:分為static 與dynamic payload。如下圖所示:Dynamic Payload length在packet Control Field的前6 bits定義。
(source from nRF24L01 Product Specification)
Static payload:
nRF24_set_recv_payload_width();
Dynamic payload:
(a) enable feature:
nRF24_enable_feature(FEATURE_EN_DPL, true)
(b) enable data pipe:
nRF24_enable_data_pipe_dynamic_payload_length(uint8_t data_pipe, bool enable);
(c) 接收端取得dynamic payload width:
nRF24_get_RX_payload_width(uint8_t *width)
(d)發送端亦需設定 data pipe 0:
nRF24_enable_data_pipe_dynamic_payload_length(0, true) - SPI read/write operations如下圖所示:
- 有資料接收時nRF24L01 IRQ pin active low。
nRF24_spi_default_init(20, 21, irq_callback);
irq_callback為user自行定義。用於處理RX_RD(receive data ready), TX_DS(transmitter data sent), MAX_RT(Maximum number of TX retransmits interrupt
)
範例:若程式中有使用GPIO IRQ請使用下列設定 gpio irq:void irq_callback(uint8_t event_type, uint8_t datapipe, uint8_t* data, uint8_t width) { static uint32_t ack_payload=0; uint8_t ack_buff[15]; switch(event_type) { case EVENT_RX_DR: ...(data: received data, width: data width) break; case EVENT_TX_DS: ...(data sent) break; case EVENT_MAX_RT: //nRF24_flush_tx(); ... break; } }void user_gpio_irq_handler { if (gpio_get_irq_event_mask(gpio_no) == (enum gpio irq level) { gpio_acknowledge_irq(gpio_no, (enum gpio irq level)); gpio_set_irq_enabled(gpio_no, (enum gpio irq level), false); ... gpio_set_irq_enabled(gpio_no, (enum gpio irq level), true); } } gpio_add_raw_irq_handler(gpio_no, user_gpio_irq_handler); gpio_set_irq_enabled(gpio_no, (enum) gpio_irq_level, true);
二、使用驅動程式範例
下列為簡要主程式結構,其他nRF24L01(+)網路拓撲(network topology)應用範例將在下一篇文章介紹。
- 主程式範例:
#include <stdio.h>
#include "pico/stdlib.h"
#include "nRF24L01.h"
#include "string.h"
#define TX_MODE
uint8_t role;
uint8_t addr[5][5] = {"0node", "1node", "2node","3node","4node"};
void irq_callback(uint8_t event_type, uint8_t datapipe, uint8_t* data, uint8_t width) {
switch(event_type) {
case EVENT_RX_DR:
break;
case EVENT_TX_DS:
break;
case EVENT_MAX_RT:
//nRF24_flush_tx();
break;
}
}
void user_gpio_irq_handler() {
if (gpio_get_irq_event_mask(gpio_no) == (enum gpio irq level) {
gpio_acknowledge_irq(gpio_no, (enum gpio irq level));
gpio_set_irq_enabled(gpio_no, (enum gpio irq level), false);
// ...
gpio_set_irq_enabled(gpio_no, (enum gpio irq level), true);
}
}
int main()
{
stdio_init_all();
nRF24_spi_default_init(20, 21, irq_callback);
#ifdef TX_MODE
role=TRANSMITTER;
#else
role = RECEIVER;
#endif
nRF24_config_mode(role);
nRF24_enable_feature(FEATURE_EN_DPL, true);
//nRF24_enable_feature(FEATURE_EN_ACK_PAY, true);
//nRF24_enable_feature(FEATURE_EN_DYN_ACK, true);
#ifdef TX_MODE
nRF24_set_TX_addr(addr[0], 5);
nRF24_set_RX_addr(0, addr[0], 5);
nRF24_enable_data_pipe_dynamic_payload_length(0, true);
#else
nRF24_enable_RXADDR(0b00001111);
nRF24_set_RX_addr(0, addr[0], 5);
nRF24_set_RX_addr(1, addr[1], 5);
nRF24_set_RX_addr(2, addr[2], 5);
nRF24_set_RX_addr(3, addr[3], 5);
nRF24_enable_data_pipe_dynamic_payload_length(0, true);
nRF24_enable_data_pipe_dynamic_payload_length(1, true);
nRF24_enable_data_pipe_dynamic_payload_length(2, true);
nRF24_enable_data_pipe_dynamic_payload_length(3, true);
#endif
while(1) {
}
return 0;
}- 主程式CMakeLists.txt 包含:
add_subdirectory(project_name)
target_link_libraries(project_name
nRF24L01_drv) 三、程式碼:
- nRF24L01.c
#include <stdio.h>
#include "pico/stdlib.h"
#include "nRF24L01.h"
#include "string.h"
// SPI Defines
// We are going to use SPI 0, and allocate it to the following GPIO pins
// Pins can be changed, see the GPIO function select table in the datasheet for information on GPIO assignments
static spi_inst_t* SPI_PORT= spi0;
static uint PIN_MISO=16;
static uint PIN_CS=17;
static uint PIN_SCK=18;
static uint PIN_MOSI=19;
static uint SPI_SPEED=1000*1000;
static uint nRF24_CE;
static uint nRF24_IRQ;
nRF24_irq_callback_t nRF24_callback;
static uint8_t nRF24_data_buffer[260];
static void nRF24_standby_to_txrx_mode();
static void nRF24_standby_I();
static uint8_t nRF24_fifo_rx_full(uint8_t *full);
static uint8_t nRF24_fifo_tx_empty(uint8_t *empty);
static uint8_t nRF24_fifo_rx_empty(uint8_t *empty);
/*!
* \brief nRF24L01 IRQ callback function
* \param gpio: gpio number
* \param event_mask
*/
static void gpio_irq_callback(uint gpio, uint32_t event_mask) {
if (gpio == nRF24_IRQ && event_mask == GPIO_IRQ_EDGE_FALL) {
gpio_acknowledge_irq(gpio, event_mask);
//gpio_set_irq_enabled(gpio, GPIO_IRQ_LEVEL_LOW, false);
uint8_t status;
uint8_t event_type, datapipe;
uint8_t data_buffer[32];
uint8_t width;
nRF24_status(&status);
memset(nRF24_data_buffer,0, 32);
datapipe = (status & 0x0E) >> 1;
if ((status & 0x40) >> EVENT_RX_DR) { // RX_DR
event_type = EVENT_RX_DR;
if (nRF24_get_RX_payload_width(&width)) {
if (width > 32) { // in nRF24L01+ product specification
printf("...in driver width > 32 datapipe:%d:%d\n", datapipe, width);
nRF24_standby_I();
nRF24_flush_rx(); //
nRF24_standby_to_txrx_mode();
}
else {
nRF24_read_payload(nRF24_data_buffer, width);
nRF24_callback(event_type, datapipe, nRF24_data_buffer, width);
}
nRF24_clear_RX_DR();
}
}
if ((status & 0x20) >> EVENT_TX_DS) { // TX_DS
event_type = EVENT_TX_DS;
nRF24_callback(event_type, datapipe, nRF24_data_buffer, 0);
nRF24_clear_TX_DS();
}
if ((status & 0x10) >> EVENT_MAX_RT) { // MAX_RT
event_type = EVENT_MAX_RT;
nRF24_callback(event_type, datapipe, nRF24_data_buffer, 0);
nRF24_clear_MAX_RT();
}
//gpio_set_irq_enabled(gpio, GPIO_IRQ_LEVEL_LOW, true);
}
}
/*!
* \brief set nRF24L01 PWR_UP in CONFIG register
*/
static void nRF24_config_PWR_UP() {
uint8_t ret;
uint8_t mode;
ret = nRF24_read_REGISTER(CONFIG, &mode,1);
if (ret) {
mode |= (0x02);
ret = nRF24_write_REGISTER(CONFIG, &mode,1);
}
}
/*!
* \brief enable CE
* \param enable true: set CE high, false: set CE low
*/
static void nRF24_enable_CE(bool enable) {
gpio_put(nRF24_CE, enable);
}
static void nRF24_standby_I() {
nRF24_enable_CE(false);
}
/*!
* \brief nRF24L01 active FEATURE. nRF24L01+ does not need this function
*/
static uint8_t nRF24_activate() {
uint8_t ret;
uint8_t status;
uint8_t cmd[2]={ACTIVATE, 0x73};
nRF24_spi_enable(true);
ret = spi_write_blocking(SPI_PORT, cmd, 2);
nRF24_spi_enable(false);
return ret;
}
/*!
* \brief 1. set SPI pin and initialize.
* 2.set nRF24L01 to standby-I mode
* \param CE nRF24L01 CE pin no
* \param IRQ nRF24L01 IRQ pin no
* \param callbak IRQ active callback funcion
*/
void nRF24_spi_default_init(uint CE, uint IRQ, nRF24_irq_callback_t callback) {
spi_init(SPI_PORT, SPI_SPEED);
gpio_set_function(PIN_MISO, GPIO_FUNC_SPI);
gpio_set_function(PIN_CS, GPIO_FUNC_SIO);
gpio_set_function(PIN_SCK, GPIO_FUNC_SPI);
gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI);
nRF24_callback = callback;
gpio_set_dir(PIN_CS, GPIO_OUT);
gpio_put(PIN_CS, 1);
nRF24_CE = CE;
gpio_init(nRF24_CE);
gpio_set_dir(nRF24_CE, GPIO_OUT);
nRF24_activate(); //nRF24L01 Product Specification
nRF24_config_PWR_UP();
nRF24_enable_CE(false); //standby-I
sleep_us(100);
nRF24_IRQ = IRQ;
gpio_pull_up(nRF24_IRQ);
gpio_set_irq_enabled_with_callback(nRF24_IRQ, GPIO_IRQ_EDGE_FALL, true, gpio_irq_callback);
}
/*!
* \brief 1. set SPI pin and initialize.
* 2.set nRF24L01 to standby-I mode
* \param spi_port SPI port number
* \param miso MISO pin no
* \param cs CS pin no
* \param ce nRF24L01 CE pin no
* \param speed SPI speed
* \param IRQ nRF24L01 IRQ pin no
* \param callbak IRQ active callback funcion
*/
void nRF24_spi_init(spi_inst_t* spi_port, uint miso, uint mosi, uint cs, uint ce, uint speed, uint IRQ, nRF24_irq_callback_t callback) {
SPI_PORT = spi_port;
PIN_MISO=miso;
PIN_MOSI=mosi;
PIN_CS=cs;
nRF24_CE = ce;
SPI_SPEED=speed;
nRF24_spi_default_init(ce, IRQ, callback);
}
/*!
* \brief enable SPI
* \param true: active, set CS LOW. false deactive, set CS HIGH
*/
void nRF24_spi_enable(bool enable) {
gpio_put(PIN_CS, !enable);
}
/*!
* \brief read nRF24L01 register
* \param REGISTER register address
* \param value read out data
* \param len read out bytes
* \return 0: failure, other successful
*/
uint8_t nRF24_read_REGISTER(uint8_t REGISTER, uint8_t *value, uint8_t len) {
uint8_t ret;
uint8_t status;
uint8_t cmd=R_REGISTER|REGISTER;
nRF24_spi_enable(true);
ret = spi_write_read_blocking(SPI_PORT, &cmd, &status, 1);
if (ret) {
ret = spi_read_blocking(SPI_PORT, NOP, value, len);
}
nRF24_spi_enable(false);
return ret;
}
/*!
* \brief write data into nRF24L01 register
* \param REGISTER register address
* \param value write data
* \param len write bytes
* \return 0: failure, other successful
*/
uint8_t nRF24_write_REGISTER(uint8_t REGISTER, uint8_t *value, uint8_t len) {
uint8_t ret;
uint8_t buff[len+1];
buff[0]=W_REGISTER | REGISTER;
memcpy(buff+1, value, len);
nRF24_spi_enable(true);
ret = spi_write_blocking(SPI_PORT, buff, len+1);
nRF24_spi_enable(false);
return ret;
}
/*!
* \brief R_RX_PL_WIN: nRF24L01 received payload width
*/
uint8_t nRF24_get_RX_payload_width(uint8_t *width) {
uint8_t ret;
uint8_t status;
uint8_t cmd=R_RX_PL_WID;
nRF24_spi_enable(true);
ret = spi_write_read_blocking(SPI_PORT, &cmd, &status, 1);
if (ret) {
ret = spi_read_blocking(SPI_PORT, NOP, width, 1);
}
nRF24_spi_enable(false);
return ret;
}
/*!
* \brief R_RX_PAYLOAD: received payload
* \param payload received payload
* \param len received number of bytes
* \return 0:failure, others: successful
*/
uint8_t nRF24_read_payload(uint8_t *payload, uint8_t len) {
uint8_t ret;
uint8_t status;
uint8_t cmd=R_RX_PAYLOAD;
nRF24_spi_enable(true);
ret = spi_write_read_blocking(SPI_PORT, &cmd, &status, 1);
if (ret) {
ret = spi_read_blocking(SPI_PORT, NOP, payload, len);
}
nRF24_spi_enable(false);
return ret;
}
/*!
* \brief W_TX_PAYLOAD: write payload
* \param payload received payload
* \param len received number of bytes
* \return 0:failure, others: successful
*/
uint8_t nRF24_write_payload(uint8_t *payload, uint8_t len) {
uint8_t ret;
uint8_t buff[len+1];
buff[0] = W_TX_PAYLOAD;
memcpy(buff+1, payload, len);
nRF24_spi_enable(true);
ret = spi_write_blocking(SPI_PORT, buff, len+1);
nRF24_spi_enable(false);
return ret;
}
/*!
* \brief W_TX_PAYLOAD_NOACK: write payload without acknowledgment. enable EN_DYN_ACK in FEATURE
* \param payload received payload
* \param len received number of bytes
* \return 0:failure, others: successful
*/
uint8_t nRF24_write_payload_no_ack(uint8_t *payload, uint8_t len) {
uint8_t ret;
uint8_t buff[len+1];
buff[0]=W_TX_PAYLOAD_NOACK;
memcpy(buff+1, payload, len);
nRF24_spi_enable(true);
ret = spi_write_blocking(SPI_PORT, buff, len+1);
nRF24_spi_enable(false);
return ret;
}
/*!
* \brief FLUSH RX FIFO
*/
uint8_t nRF24_flush_rx() {
uint8_t ret;
uint8_t cmd=FLUSH_RX;
uint8_t status;
nRF24_spi_enable(true);
ret = spi_write_read_blocking(SPI_PORT, &cmd, &status, 1);
nRF24_spi_enable(false);
return ret;
}
/*!
* \brief FLUSH TX FIFO
*/
uint8_t nRF24_flush_tx() {
uint8_t ret;
uint8_t cmd=FLUSH_TX;
uint8_t status;
nRF24_spi_enable(true);
ret = spi_write_read_blocking(SPI_PORT, &cmd, &status, 1);
nRF24_spi_enable(false);
return ret;
}
uint8_t nRF24_reuse_tx_pl() {
uint8_t ret;
uint8_t cmd=REUSE_TX_PL;
uint8_t status;
nRF24_spi_enable(true);
ret = spi_write_read_blocking(SPI_PORT, &cmd, &status, 1);
nRF24_spi_enable(false);
return ret;
}
/*!
* \brief W_ACK_PAYLOAD
*/
uint8_t nRF24_write_ack_payload(uint8_t data_pipe, uint8_t *payload, uint8_t len) {
uint8_t ret;
uint8_t buff[len+2];
buff[0]=W_ACK_PAYLOAD | (data_pipe&0x07);
memcpy(buff+1, payload, len);
nRF24_spi_enable(true);
ret = spi_write_blocking(SPI_PORT, buff, len+1);
nRF24_spi_enable(false);
return ret;
}
uint8_t nRF24_set_TX_addr(uint8_t *addr, uint8_t len) {
return (nRF24_write_REGISTER(TX_ADDR, addr, len));
}
uint8_t nRF24_get_TX_addr(uint8_t *addr, uint8_t len) {
return (nRF24_read_REGISTER(TX_ADDR, addr, len));
}
uint8_t nRF24_set_RX_addr(uint8_t data_pipe, uint8_t *addr, uint8_t len) {
uint8_t rx_addr_reg = RX_ADDR_P0 + data_pipe;
if (data_pipe > 1) len = 1;
return (nRF24_write_REGISTER(rx_addr_reg, addr, len));
}
uint8_t nRF24_get_RX_addr(uint8_t data_pipe, uint8_t *addr, uint8_t len) {
uint8_t rx_addr_reg = RX_ADDR_P0 + data_pipe;
if (data_pipe > 1) len = 1;
return (nRF24_read_REGISTER(rx_addr_reg, addr, len));
}
uint8_t nRF24_status(uint8_t *status) {
uint8_t ret;
uint8_t cmd = NOP;
nRF24_spi_enable(true);
ret = spi_write_read_blocking(SPI_PORT, &cmd, status, 1);
nRF24_spi_enable(false);
return ret;
}
/*!
* \param channel 0~125
*/
uint8_t nRF24_set_RF_channel(uint8_t channel) {
if (channel > 125) channel = 125;
return (nRF24_write_REGISTER(RF_CH, &channel,1));
}
/*!
* \param pa: PA_0dBM, PA_m_6dBm(-6dBm), PA_m_12dBm, PA_m_18dBm
*/
uint8_t nRF24_set_power_amplifier(uint8_t pa) {
uint8_t rf_setup;
if(!nRF24_read_REGISTER(RF_SETUP, &rf_setup,1)) return false;
rf_setup &= 0xF9;
switch(pa) {
case PA_0dBm:
rf_setup |= 0x06;
break;
case PA_m_6dBm:
rf_setup |= 0x04;
break;
case PA_m_12dBm:
rf_setup |= 0x02;
break;
case PA_m_18dBm:
rf_setup |= 0x00;
break;
}
return (nRF24_write_REGISTER(RF_SETUP, &rf_setup,1));
}
/*!
* \param aw 3~5
*/
uint8_t nRF24_set_address_width(uint8_t aw) {
if (aw >=3 && aw <= 5 ) {
aw -= 2;
return (nRF24_write_REGISTER(SETUP_AW, &aw,1));
}
else
return false;
}
uint8_t nRF24_get_address_width(uint8_t *aw) {
if (!nRF24_read_REGISTER(SETUP_AW, aw,1)) {
*aw=0;
return false;
}
*aw = *aw+2;
return true;
}
/*!
* \brief EN_AA register
*/
uint8_t nRF24_enable_auto_ack(uint8_t data_pipe, bool enable) {
uint8_t aa;
uint8_t mask;
if (data_pipe < 0 || data_pipe > 5) return false;
mask = 0x1 << data_pipe;
if(!nRF24_read_REGISTER(EN_AA, &aa, 1)) return false;
if (enable) {
aa |= mask;
} else {
aa &= (mask^0xFF);
}
return (nRF24_write_REGISTER(EN_AA, &aa,1));
}
/*!
* \param feature FEATURE_EN_DYN_ACK, FEATURE_EN_ACK_PAY, FEATURE_EN_DPL
* \param enable true:enable, false:disable
*/
uint8_t nRF24_enable_feature(uint8_t feature, bool enable) {
uint8_t buff;
if(!nRF24_read_REGISTER(FEATURE, &buff, 1)) return false;
if (enable) {
buff |= (0x01 << feature);
} else {
buff &= ((0x01 << feature) ^ 0xFF);
}
return (nRF24_write_REGISTER(FEATURE, &buff,1));
}
/*!
* \brief DYNPD register
*/
uint8_t nRF24_enable_data_pipe_dynamic_payload_length(uint8_t data_pipe, bool enable) {
if (data_pipe < 0 || data_pipe > 5) return false;
if (!nRF24_enable_feature(FEATURE_EN_DPL, true)) return false;
if (!nRF24_enable_auto_ack(data_pipe, true)) return false;
uint8_t dynpd;
uint8_t mask;
mask = 0x1 << data_pipe;
if(!nRF24_read_REGISTER(DYNPD, &dynpd, 1)) return false;
if (enable) {
dynpd |= mask;
} else {
dynpd &= (mask^0xff);
}
return (nRF24_write_REGISTER(DYNPD, &dynpd,1));
}
/*!
* \brief Received Power Detector (RPD)
*/
uint8_t nRF24_get_RPD(uint8_t *rpd_value) {
return (nRF24_read_REGISTER(RPD, rpd_value, 1));
}
/*!
* \brief RX_PW_Px register, Number of bytes in RX payload in data pipe Px
*/
uint8_t nRF24_set_recv_payload_width(uint8_t data_pipe, uint8_t width) {
if (width > 32 || width < 0) return false;
uint8_t rx_pw_px = RX_PW_P0+data_pipe;
return (nRF24_write_REGISTER(rx_pw_px, &width, 1));
}
/*!
* \brief enable RX Address at data pipe x
* \param mask 0b00xxxxxx: ex. 0b00010111 enable p0~2 & p4
*/
uint8_t nRF24_enable_RXADDR(uint8_t mask) {
return (nRF24_write_REGISTER(EN_RXADDR, &mask, 1));
}
uint8_t nRF24_set_data_rate(uint8_t rate) {
uint8_t rf_setup;
if(!nRF24_read_REGISTER(RF_SETUP, &rf_setup, 1)) return false;
rf_setup &= 0xD7;
switch(rate) {
case DATA_RATE_250K:
rf_setup |= 0x20;
break;
case DATA_RATE_1M:
rf_setup |= 0x00;
break;
case DATA_RATE_2M:
rf_setup |= 0x08;
break;
}
return (nRF24_write_REGISTER(RF_SETUP, &rf_setup,1));
}
/*!
* \brief set nRF24L01+ mode
* \param PRIM_RX 1:PRX, 0: PTX
* \return 0: falure, other success
*/
uint8_t nRF24_config_mode(uint8_t PRIM_RX) {
uint8_t ret;
uint8_t mode;
ret = nRF24_read_REGISTER(CONFIG, &mode, 1);
if (ret) {
nRF24_enable_CE(false);
sleep_us(10);
mode = (mode & 0xFE) | (PRIM_RX & 0x01);
ret = nRF24_write_REGISTER(CONFIG, &mode,1);
nRF24_enable_CE(true);
sleep_us(2000);
}
return ret;
}
/*!
* \param irq_type EVENT_MAX_RT, EVENT_TX_DS, EVENT_RX_DR
* \param enable
*/
uint8_t nRF24_enable_IRQ(uint8_t irq_type, bool enable) {
if (irq_type < EVENT_MAX_RT || irq_type > EVENT_RX_DR) return 0;
uint8_t config;
uint8_t mask=0x01 << irq_type;
if (!nRF24_read_REGISTER(CONFIG, &config, 1)) return 0;
if (enable) {
config &= (mask ^ 0xFF);
} else {
config |= mask;
}
return nRF24_write_REGISTER(CONFIG, &config, 1);
}
/*!
* \brief clear MAX_RT interrupt
*/
uint8_t nRF24_clear_MAX_RT() {
uint8_t status;
if (!nRF24_status(&status)) return 0;
if (status & 0x10) {
status |= 0x10;
return (nRF24_write_REGISTER(STATUS, &status, 1));
}
return 0;
}
/*!
* \brief clear TX_DS interrupt
*/
uint8_t nRF24_clear_TX_DS() {
uint8_t status;
if (!nRF24_status(&status)) return 0;
if (status & 0x20) {
status |= 0x20;
return (nRF24_write_REGISTER(STATUS, &status, 1));
}
return 0;
}
/*!
* \brief clear RX_DR interrupt
*/
uint8_t nRF24_clear_RX_DR() {
uint8_t status;
if (!nRF24_status(&status)) return 0;
if (status & 0x40) {
status |= 0x40;
return (nRF24_write_REGISTER(STATUS, &status, 1));
}
return 0;
}
static void nRF24_standby_to_txrx_mode(){
nRF24_enable_CE(true);
busy_wait_us(140); // Standby modes --> TX/RX mode : max 130us.
// Delay from CE positive edge to CSN low : min 4us
}
/*!
* \brief set SETUP_RETR register bit 7:4 Auto Retransmit Delay
* \param delay time = 250us*(delay+1), value:0x00~0x0f
*/
uint8_t nRF24_set_auto_retransmit_delay(uint8_t delay) {
uint8_t ard;
if (delay > 0x0f) delay = 0x0f;
if (nRF24_read_REGISTER(SETUP_RETR, &ard,1)) {
ard = (ard&0x0f) | delay << 4;
return (nRF24_write_REGISTER(SETUP_RETR, &ard, 1));
}
return false;
}
uint8_t nRF24_fifo_tx_full(uint8_t *full) {
uint8_t fifo_status;
uint8_t ret;
ret = nRF24_read_REGISTER(FIFO_STATUS, &fifo_status, 1);
if (ret) {
fifo_status &= 0x20;
*full = fifo_status >> 5;
}
return ret;
}
static uint8_t nRF24_fifo_tx_empty(uint8_t *empty) {
uint8_t fifo_status;
uint8_t ret;
ret = nRF24_read_REGISTER(FIFO_STATUS, &fifo_status, 1);
if (ret) {
fifo_status &= 0x10;
*empty = fifo_status >> 4;
}
return ret;
}
static uint8_t nRF24_fifo_rx_full(uint8_t *full) {
uint8_t fifo_status;
uint8_t ret;
ret = nRF24_read_REGISTER(FIFO_STATUS, &fifo_status, 1);
if (ret) {
fifo_status &= 0x02;
*full = fifo_status >> 1;
}
return ret;
}
static uint8_t nRF24_fifo_rx_empty(uint8_t *empty) {
uint8_t fifo_status;
uint8_t ret;
ret = nRF24_read_REGISTER(FIFO_STATUS, &fifo_status, 1);
if (ret) {
fifo_status &= 0x01;
*empty = fifo_status;
}
return ret;
}
- nRF24L01.h
#ifndef __nRF24L01_H__
#define __nRF24L01_H__
#include "hardware/spi.h"
// Command
#define R_REGISTER 0b00000000
#define W_REGISTER 0b00100000
#define R_RX_PAYLOAD 0b01100001
#define W_TX_PAYLOAD 0b10100000
#define FLUSH_TX 0b11100001
#define FLUSH_RX 0b11100010
#define REUSE_TX_PL 0b11100011
#define ACTIVATE 0b01010000 //nRF24L01 Product Specification
#define R_RX_PL_WID 0b01100000
#define W_ACK_PAYLOAD 0b10101000 // 0b10100PPP
#define W_TX_PAYLOAD_NOACK 0b10110000
#define NOP 0b11111111
//Registers
#define CONFIG 0x00
#define EN_AA 0x01
#define EN_RXADDR 0x02
#define SETUP_AW 0x03
#define SETUP_RETR 0x04
#define RF_CH 0x05
#define RF_SETUP 0x06
#define STATUS 0x07
#define OBSERVE_TX 0x08
#define RPD 0x09
#define RX_ADDR_P0 0x0A
#define RX_ADDR_P1 0x0B
#define RX_ADDR_P2 0x0C
#define RX_ADDR_P3 0x0D
#define RX_ADDR_P4 0x0E
#define RX_ADDR_P5 0x0F
#define TX_ADDR 0x10
#define RX_PW_P0 0x11
#define RX_PW_P1 0x12
#define RX_PW_P2 0x13
#define RX_PW_P3 0x14
#define RX_PW_P4 0x15
#define RX_PW_P5 0x16
#define FIFO_STATUS 0x17
#define DYNPD 0x1C
#define FEATURE 0x1D
#define TRANSMITTER 0
#define RECEIVER 1
enum {
DATA_RATE_250K=0,
DATA_RATE_1M,
DATA_RATE_2M
} nRF24_DATA_RATE;
enum {
PA_0dBm=0,
PA_m_6dBm,
PA_m_12dBm,
PA_m_18dBm,
} nRF24_PA;
enum {
AW_3=1,
AW_4,
AW_5,
} nRF24_ADDRESS_WIDTH;
enum {
FEATURE_EN_DYN_ACK=0, // W_TX_PAYLOAD_NOACK
FEATURE_EN_ACK_PAY,
FEATURE_EN_DPL,
}nRF24_FEATURE_MASK;
enum {
EVENT_MAX_RT=4,
EVENT_TX_DS,
EVENT_RX_DR,
} nRF24_IRQ_EVENT;
typedef void (*nRF24_irq_callback_t)(uint8_t evant_type, uint8_t datapipe, uint8_t* data, uint8_t width);
void nRF24_spi_default_init(uint CE, uint IRQ, nRF24_irq_callback_t callback);
void nRF24_spi_init(spi_inst_t* spi_port, uint miso, uint mosi, uint cs, uint ce, uint speed, uint IRQ, nRF24_irq_callback_t callback);
void nRF24_spi_enable(bool enable);
uint8_t nRF24_status(uint8_t *status);
uint8_t nRF24_read_REGISTER(uint8_t REGISTER, uint8_t *value, uint8_t len);
uint8_t nRF24_write_REGISTER(uint8_t REGISTER, uint8_t *value, uint8_t len);
uint8_t nRF24_config_mode(uint8_t PRIM_RX);
uint8_t nRF24_set_data_rate(uint8_t rate);
uint8_t nRF24_set_RF_channel(uint8_t channel);
uint8_t nRF24_set_power_amplifier(uint8_t pa);
uint8_t nRF24_set_address_width(uint8_t aw);
uint8_t nRF24_set_recv_payload_width(uint8_t data_pipe, uint8_t width);
uint8_t nRF24_set_RX_addr(uint8_t data_pipe, uint8_t *addr, uint8_t len);
uint8_t nRF24_set_TX_addr(uint8_t *addr, uint8_t len);
uint8_t nRF24_get_RPD(uint8_t *rpd_value);
uint8_t nRF24_get_RX_payload_width(uint8_t *width);
uint8_t nRF24_get_address_width(uint8_t *aw);
uint8_t nRF24_get_RX_addr(uint8_t data_pipe, uint8_t *addr, uint8_t len);
uint8_t nRF24_get_TX_addr(uint8_t *addr, uint8_t len);
uint8_t nRF24_enable_auto_ack(uint8_t data_pipe, bool enable);
uint8_t nRF24_enable_data_pipe_dynamic_payload_length(uint8_t data_pipe, bool enable);
uint8_t nRF24_enable_feature(uint8_t feature, bool enable);
uint8_t nRF24_enable_RXADDR(uint8_t mask);
uint8_t nRF24_read_payload(uint8_t *payload, uint8_t len);
uint8_t nRF24_write_payload(uint8_t *payload, uint8_t len);
uint8_t nRF24_write_payload_no_ack(uint8_t *payload, uint8_t len);
uint8_t nRF24_flush_rx();
uint8_t nRF24_flush_tx();
uint8_t nRF24_reuse_tx_pl();
uint8_t nRF24_write_ack_payload(uint8_t data_pipe, uint8_t *payload, uint8_t len);
uint8_t nRF24_clear_MAX_RT();
uint8_t nRF24_clear_TX_DS();
uint8_t nRF24_clear_RX_DR();
void nRF24_standby_I();
#endif- CMakeLists.txt
add_library(nRF24L01_drv INTERFACE)
target_sources(nRF24L01_drv INTERFACE
${CMAKE_CURRENT_LIST_DIR}/nRF24L01.c
)
target_include_directories(nRF24L01_drv INTERFACE
${CMAKE_CURRENT_LIST_DIR}
)
target_link_libraries(nRF24L01_drv INTERFACE
hardware_spi
)

沒有留言:
張貼留言