本文章介紹Raspberry Pi Pico 使用內建的flash 與外加的SPI flash devicet存取資料。
Raspberry Pi Pico 內建Flash為2MB Winbond W25Q16JV, QSPI interface。外加一個Winbond W25Q128FV 16MB的Flash device。測試再沒有檔案系統與有檔案系統下存取資料。
一、Raspberry Pi Pico開發板內建Flash讀寫:
開發板內建為Winbond W25Q16JV 2MB的Flash。除了存放程式碼外,多餘的空間可用來存放少量的資料,如系統設定檔等。
使用c-sdk內建指令,使用hardware_flash library。
CMakeLists.txt:
include file:
指令:
要寫入新資料或是要覆蓋就資料前,必須先erase後才能成功。
下列程式碼為在XIP_BASE(0x10000000) offset 1M位置寫入第二的page後再讀出。讀出資料直接取得XIP_BASE+offset address 的內容。
使用Winbond W25Q128FV 16MB Flash測試。Datasheet指令集如下:
spi clock如下圖:
根據Datasheet指令,相關程式碼如文末所示。
- 測試一:沒有使用檔案系統下,直接寫入page與讀取。
新的page或是要修改舊的page資料,需要先erase該page的sector後才能再寫入。
- 測試二、使用FatFs檔案系統架構在device driver上。
- 到http://elm-chan.org/fsw/ff/00index_e.html下載FatFs modules。
- 複製檔案到專案子資料夾FatFs下
- 實做FatFs MAI(disk_status, disk_initialize, disk_read, disk_write)
- 依據文件說明,建立檔案flash_diskio.c實做上述五個function。
程式碼:請參閱文末詳細程式碼。
三、成果影片:
四、程式碼:
- 修改過的ffconf.h
/*---------------------------------------------------------------------------/
/ Configurations of FatFs Module
/---------------------------------------------------------------------------*/
#define FFCONF_DEF 80286 /* Revision ID */
/*---------------------------------------------------------------------------/
/ Function Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_READONLY 0
/* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
/ Read-only configuration removes writing API functions, f_write(), f_sync(),
/ f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()
/ and optional writing functions as well. */
#define FF_FS_MINIMIZE 0
/* This option defines minimization level to remove some basic API functions.
/
/ 0: Basic functions are fully enabled.
/ 1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_truncate() and f_rename()
/ are removed.
/ 2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
/ 3: f_lseek() function is removed in addition to 2. */
#define FF_USE_FIND 1 // 0 --> 1
/* This option switches filtered directory read functions, f_findfirst() and
/ f_findnext(). (0:Disable, 1:Enable 2:Enable with matching altname[] too) */
#define FF_USE_MKFS 1 // 0 --> 1
/* This option switches f_mkfs() function. (0:Disable or 1:Enable) */
#define FF_USE_FASTSEEK 1 // 0 --> 1
/* This option switches fast seek function. (0:Disable or 1:Enable) */
#define FF_USE_EXPAND 0
/* This option switches f_expand function. (0:Disable or 1:Enable) */
#define FF_USE_CHMOD 0
/* This option switches attribute manipulation functions, f_chmod() and f_utime().
/ (0:Disable or 1:Enable) Also FF_FS_READONLY needs to be 0 to enable this option. */
#define FF_USE_LABEL 0
/* This option switches volume label functions, f_getlabel() and f_setlabel().
/ (0:Disable or 1:Enable) */
#define FF_USE_FORWARD 0
/* This option switches f_forward() function. (0:Disable or 1:Enable) */
#define FF_USE_STRFUNC 1 // 0 --> 1
#define FF_PRINT_LLI 1
#define FF_PRINT_FLOAT 1
#define FF_STRF_ENCODE 3
/* FF_USE_STRFUNC switches string functions, f_gets(), f_putc(), f_puts() and
/ f_printf().
/
/ 0: Disable. FF_PRINT_LLI, FF_PRINT_FLOAT and FF_STRF_ENCODE have no effect.
/ 1: Enable without LF-CRLF conversion.
/ 2: Enable with LF-CRLF conversion.
/
/ FF_PRINT_LLI = 1 makes f_printf() support long long argument and FF_PRINT_FLOAT = 1/2
/ makes f_printf() support floating point argument. These features want C99 or later.
/ When FF_LFN_UNICODE >= 1 with LFN enabled, string functions convert the character
/ encoding in it. FF_STRF_ENCODE selects assumption of character encoding ON THE FILE
/ to be read/written via those functions.
/
/ 0: ANSI/OEM in current CP
/ 1: Unicode in UTF-16LE
/ 2: Unicode in UTF-16BE
/ 3: Unicode in UTF-8
*/
/*---------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/---------------------------------------------------------------------------*/
#define FF_CODE_PAGE 950
/* This option specifies the OEM code page to be used on the target system.
/ Incorrect code page setting can cause a file open failure.
/
/ 437 - U.S.
/ 720 - Arabic
/ 737 - Greek
/ 771 - KBL
/ 775 - Baltic
/ 850 - Latin 1
/ 852 - Latin 2
/ 855 - Cyrillic
/ 857 - Turkish
/ 860 - Portuguese
/ 861 - Icelandic
/ 862 - Hebrew
/ 863 - Canadian French
/ 864 - Arabic
/ 865 - Nordic
/ 866 - Russian
/ 869 - Greek 2
/ 932 - Japanese (DBCS)
/ 936 - Simplified Chinese (DBCS)
/ 949 - Korean (DBCS)
/ 950 - Traditional Chinese (DBCS)
/ 0 - Include all code pages above and configured by f_setcp()
*/
#define FF_USE_LFN 3 // 0->3
#define FF_MAX_LFN 255
/* The FF_USE_LFN switches the support for LFN (long file name).
/
/ 0: Disable LFN. FF_MAX_LFN has no effect.
/ 1: Enable LFN with static working buffer on the BSS. Always NOT thread-safe.
/ 2: Enable LFN with dynamic working buffer on the STACK.
/ 3: Enable LFN with dynamic working buffer on the HEAP.
/
/ To enable the LFN, ffunicode.c needs to be added to the project. The LFN function
/ requiers certain internal working buffer occupies (FF_MAX_LFN + 1) * 2 bytes and
/ additional (FF_MAX_LFN + 44) / 15 * 32 bytes when exFAT is enabled.
/ The FF_MAX_LFN defines size of the working buffer in UTF-16 code unit and it can
/ be in range of 12 to 255. It is recommended to be set it 255 to fully support LFN
/ specification.
/ When use stack for the working buffer, take care on stack overflow. When use heap
/ memory for the working buffer, memory management functions, ff_memalloc() and
/ ff_memfree() exemplified in ffsystem.c, need to be added to the project. */
#define FF_LFN_UNICODE 0
/* This option switches the character encoding on the API when LFN is enabled.
/
/ 0: ANSI/OEM in current CP (TCHAR = char)
/ 1: Unicode in UTF-16 (TCHAR = WCHAR)
/ 2: Unicode in UTF-8 (TCHAR = char)
/ 3: Unicode in UTF-32 (TCHAR = DWORD)
/
/ Also behavior of string I/O functions will be affected by this option.
/ When LFN is not enabled, this option has no effect. */
#define FF_LFN_BUF 255
#define FF_SFN_BUF 12
/* This set of options defines size of file name members in the FILINFO structure
/ which is used to read out directory items. These values should be suffcient for
/ the file names to read. The maximum possible length of the read file name depends
/ on character encoding. When LFN is not enabled, these options have no effect. */
#define FF_FS_RPATH 0
/* This option configures support for relative path.
/
/ 0: Disable relative path and remove related functions.
/ 1: Enable relative path. f_chdir() and f_chdrive() are available.
/ 2: f_getcwd() function is available in addition to 1.
*/
/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/---------------------------------------------------------------------------*/
#define FF_VOLUMES 1
/* Number of volumes (logical drives) to be used. (1-10) */
#define FF_STR_VOLUME_ID 0
#define FF_VOLUME_STRS "RAM","NAND","CF","SD","SD2","USB","USB2","USB3"
/* FF_STR_VOLUME_ID switches support for volume ID in arbitrary strings.
/ When FF_STR_VOLUME_ID is set to 1 or 2, arbitrary strings can be used as drive
/ number in the path name. FF_VOLUME_STRS defines the volume ID strings for each
/ logical drives. Number of items must not be less than FF_VOLUMES. Valid
/ characters for the volume ID strings are A-Z, a-z and 0-9, however, they are
/ compared in case-insensitive. If FF_STR_VOLUME_ID >= 1 and FF_VOLUME_STRS is
/ not defined, a user defined volume string table is needed as:
/
/ const char* VolumeStr[FF_VOLUMES] = {"ram","flash","sd","usb",...
*/
#define FF_MULTI_PARTITION 0
/* This option switches support for multiple volumes on the physical drive.
/ By default (0), each logical drive number is bound to the same physical drive
/ number and only an FAT volume found on the physical drive will be mounted.
/ When this function is enabled (1), each logical drive number can be bound to
/ arbitrary physical drive and partition listed in the VolToPart[]. Also f_fdisk()
/ function will be available. */
#define FF_MIN_SS 512
#define FF_MAX_SS 4096 // 512 --> 4096
/* This set of options configures the range of sector size to be supported. (512,
/ 1024, 2048 or 4096) Always set both 512 for most systems, generic memory card and
/ harddisk, but a larger value may be required for on-board flash memory and some
/ type of optical media. When FF_MAX_SS is larger than FF_MIN_SS, FatFs is configured
/ for variable sector size mode and disk_ioctl() function needs to implement
/ GET_SECTOR_SIZE command. */
#define FF_LBA64 0
/* This option switches support for 64-bit LBA. (0:Disable or 1:Enable)
/ To enable the 64-bit LBA, also exFAT needs to be enabled. (FF_FS_EXFAT == 1) */
#define FF_MIN_GPT 0x10000000
/* Minimum number of sectors to switch GPT as partitioning format in f_mkfs and
/ f_fdisk function. 0x100000000 max. This option has no effect when FF_LBA64 == 0. */
#define FF_USE_TRIM 0
/* This option switches support for ATA-TRIM. (0:Disable or 1:Enable)
/ To enable Trim function, also CTRL_TRIM command should be implemented to the
/ disk_ioctl() function. */
/*---------------------------------------------------------------------------/
/ System Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_TINY 0
/* This option switches tiny buffer configuration. (0:Normal or 1:Tiny)
/ At the tiny configuration, size of file object (FIL) is shrinked FF_MAX_SS bytes.
/ Instead of private sector buffer eliminated from the file object, common sector
/ buffer in the filesystem object (FATFS) is used for the file data transfer. */
#define FF_FS_EXFAT 0
/* This option switches support for exFAT filesystem. (0:Disable or 1:Enable)
/ To enable exFAT, also LFN needs to be enabled. (FF_USE_LFN >= 1)
/ Note that enabling exFAT discards ANSI C (C89) compatibility. */
#define FF_FS_NORTC 0
#define FF_NORTC_MON 1
#define FF_NORTC_MDAY 1
#define FF_NORTC_YEAR 2022
/* The option FF_FS_NORTC switches timestamp feature. If the system does not have
/ an RTC or valid timestamp is not needed, set FF_FS_NORTC = 1 to disable the
/ timestamp feature. Every object modified by FatFs will have a fixed timestamp
/ defined by FF_NORTC_MON, FF_NORTC_MDAY and FF_NORTC_YEAR in local time.
/ To enable timestamp function (FF_FS_NORTC = 0), get_fattime() function need to be
/ added to the project to read current time form real-time clock. FF_NORTC_MON,
/ FF_NORTC_MDAY and FF_NORTC_YEAR have no effect.
/ These options have no effect in read-only configuration (FF_FS_READONLY = 1). */
#define FF_FS_NOFSINFO 0
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this
/ option, and f_getfree() function at the first time after volume mount will force
/ a full FAT scan. Bit 1 controls the use of last allocated cluster number.
/
/ bit0=0: Use free cluster count in the FSINFO if available.
/ bit0=1: Do not trust free cluster count in the FSINFO.
/ bit1=0: Use last allocated cluster number in the FSINFO if available.
/ bit1=1: Do not trust last allocated cluster number in the FSINFO.
*/
#define FF_FS_LOCK 0
/* The option FF_FS_LOCK switches file lock function to control duplicated file open
/ and illegal operation to open objects. This option must be 0 when FF_FS_READONLY
/ is 1.
/
/ 0: Disable file lock function. To avoid volume corruption, application program
/ should avoid illegal open, remove and rename to the open objects.
/ >0: Enable file lock function. The value defines how many files/sub-directories
/ can be opened simultaneously under file lock control. Note that the file
/ lock control is independent of re-entrancy. */
#define FF_FS_REENTRANT 0
#define FF_FS_TIMEOUT 1000
/* The option FF_FS_REENTRANT switches the re-entrancy (thread safe) of the FatFs
/ module itself. Note that regardless of this option, file access to different
/ volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
/ and f_fdisk() function, are always not re-entrant. Only file/directory access
/ to the same volume is under control of this featuer.
/
/ 0: Disable re-entrancy. FF_FS_TIMEOUT have no effect.
/ 1: Enable re-entrancy. Also user provided synchronization handlers,
/ ff_mutex_create(), ff_mutex_delete(), ff_mutex_take() and ff_mutex_give()
/ function, must be added to the project. Samples are available in ffsystem.c.
/
/ The FF_FS_TIMEOUT defines timeout period in unit of O/S time tick.
*/
/*--- End of configuration options ---*/
- CMakeLists.txt
# Generated Cmake Pico project file
cmake_minimum_required(VERSION 3.13)
set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
# Initialise pico_sdk from installed location
# (note this can come from environment, CMake cache etc)
set(PICO_SDK_PATH "/home/duser/pico/pico-sdk")
set(PICO_BOARD pico CACHE STRING "Board type")
# Pull in Raspberry Pi Pico SDK (must be before project)
include(pico_sdk_import.cmake)
if (PICO_SDK_VERSION_STRING VERSION_LESS "1.4.0")
message(FATAL_ERROR "Raspberry Pi Pico SDK version 1.3.0 (or later) required. Your version is ${PICO_SDK_VERSION_STRING}")
endif()
project(spi_flash_fatfs C CXX ASM)
# Initialise the Raspberry Pi Pico SDK
pico_sdk_init()
# Add executable. Default name is the project name, version 0.1
add_executable(spi_flash_fatfs spi_flash_fatfs.c W25Q.c)
pico_set_program_name(spi_flash_fatfs "spi_flash_fatfs")
pico_set_program_version(spi_flash_fatfs "0.1")
pico_enable_stdio_uart(spi_flash_fatfs 1)
pico_enable_stdio_usb(spi_flash_fatfs 0)
# Add the standard library to the build
target_link_libraries(spi_flash_fatfs
pico_stdlib
hardware_flash
FatFs)
# Add the standard include files to the build
target_include_directories(spi_flash_fatfs PRIVATE
${CMAKE_CURRENT_LIST_DIR}
${CMAKE_CURRENT_LIST_DIR}/FatFs
${CMAKE_CURRENT_LIST_DIR}/.. # for our common lwipopts or any other standard includes, if required
)
# Add any user requested libraries
target_link_libraries(spi_flash_fatfs
hardware_spi
hardware_rtc
)
# Tell CMake where to find other source code
add_subdirectory(FatFs build)
pico_add_extra_outputs(spi_flash_fatfs)
- W25Q.c
#include "stdio.h"
#include "stdlib.h"
#include "W25Q.h"
#include "FatFs/ff.h"
#include "FatFs/ffconf.h"
uint8_t rxbuf[10];
uint8_t txbuf[10];
w25q_data_t w25q_data;
/*=================*/
const uint8_t i_uniqueid=0x4b;
const uint8_t i_page_program=0x02;
const uint8_t i_read_data=0x03;
const uint8_t i_fast_read_data=0x0b;
const uint8_t i_write_disable=0x04;
const uint8_t i_read_status_r1=0x05;
const uint8_t i_read_status_r2=0x35;
const uint8_t i_read_status_r3=0x15;
const uint8_t i_write_status_r1=0x01;
const uint8_t i_write_status_r2=0x31;
const uint8_t i_write_status_r3=0x11;
const uint8_t i_sector_erase=0x20;
const uint8_t i_block_erase_32k=0x52;
const uint8_t i_block_erase_64k=0xd8;
const uint8_t i_write_enable=0x06;
const uint8_t i_erase_chip=0xc7;
const uint8_t i_device_id=0x90;
const uint8_t i_JEDEC_ID=0x9f;
void w25q_spi_cs_low() {
gpio_put(w25q_data.cs_pin,0);
}
void w25q_spi_cs_high(){
gpio_put(w25q_data.cs_pin,1);
}
void w25q_send_cmd_read(uint8_t cmd, uint32_t address, uint8_t *buf, uint32_t len, bool is_fast) {
uint8_t addr[4];
int addr_len=3;
addr[3] = 0x00;
if (is_fast) addr_len=4;
addr[0] = (address & 0x00ff0000) >> 16;
addr[1] = (address & 0x0000ff00) >> 8;
addr[2] = (address & 0x000000ff);
w25q_spi_cs_low();
spi_write_blocking(w25q_data.spi, &cmd, 1);
spi_write_blocking(w25q_data.spi, addr, addr_len);
spi_read_blocking(w25q_data.spi, 0x00, buf, len);
w25q_spi_cs_high();
}
void w25q_send_cmd_write(uint8_t cmd, uint32_t address, uint8_t *buf, uint32_t len) {
uint8_t addr[3];
addr[0] = (address & 0x00ff0000) >> 16;
addr[1] = (address & 0x0000ff00) >> 8;
addr[2] = (address & 0x000000ff);
w25q_write_enable();
w25q_spi_cs_low();
spi_write_blocking(w25q_data.spi, &cmd, 1);
spi_write_blocking(w25q_data.spi, addr, 3);
spi_write_blocking(w25q_data.spi, buf, len);
w25q_spi_cs_high();
}
void w25q_send_cmd_addr(uint8_t cmd, uint32_t address) {
uint8_t addr[3];
addr[0] = (address & 0x00ff0000) >> 16;
addr[1] = (address & 0x0000ff00) >> 8;
addr[2] = (address & 0x000000ff);
w25q_spi_cs_low();
spi_write_blocking(w25q_data.spi, &cmd, 1);
spi_write_blocking(w25q_data.spi, addr, 3);
w25q_spi_cs_high();
}
void w25q_send_cmd(uint8_t cmd, uint8_t *buf, uint32_t len) {
w25q_spi_cs_low();
spi_write_blocking(w25q_data.spi, &cmd, 1);
spi_read_blocking(w25q_data.spi, 0x00, buf, len);
w25q_spi_cs_high();
}
void w25q_send_simple_cmd(uint8_t cmd) {
w25q_spi_cs_low();
spi_write_blocking(w25q_data.spi, &cmd, 1);
w25q_spi_cs_high();
}
void w25q_write_enable() {
w25q_send_simple_cmd(i_write_enable);
sleep_ms(1);
}
void w25q_write_disable() {
w25q_send_simple_cmd(i_write_disable);
sleep_ms(1);
}
/*==================*/
bool w25q_spi_init(spi_inst_t *spi, uint cs_pin) {
w25q_data.spi = spi;
w25q_data.cs_pin = cs_pin;
gpio_set_dir(PIN_CS, GPIO_OUT);
spi_init(SPI_PORT, 5000*1000);
gpio_set_function(PIN_MISO, GPIO_FUNC_SPI);
gpio_set_function(PIN_CS, GPIO_FUNC_SIO);
gpio_set_function(PIN_SCK, GPIO_FUNC_SPI);
gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI);
w25q_get_JEDEC_ID();
w25q_data.lock = 1;
sleep_ms(100);
switch (w25q_data.jedec_id & 0x000000FF)
{
case 0x20: // w25q512
w25q_data.blockCount = 1024;
break;
case 0x19: // w25q256
w25q_data.blockCount = 512;
break;
case 0x18: // w25q128
w25q_data.blockCount = 256;
break;
case 0x17: // w25q64
w25q_data.blockCount = 128;
break;
case 0x16: // w25q32
w25q_data.blockCount = 64;
break;
case 0x15: // w25q16
w25q_data.blockCount = 32;
break;
case 0x14: // w25q80
w25q_data.blockCount = 16;
break;
case 0x13: // w25q40
w25q_data.blockCount = 8;
case 0x12: // w25q20
w25q_data.blockCount = 4;
break;
case 0x11: // w25q10
w25q_data.blockCount = 2;
break;
default:
w25q_data.lock = 0;
return false;
}
w25q_data.pageSize = 256;
w25q_data.sectorSize = 0x1000;
w25q_data.sectorCount = w25q_data.blockCount * 16;
w25q_data.pageCount = (w25q_data.sectorCount * w25q_data.sectorSize) / w25q_data.pageSize;
w25q_data.blockSize = w25q_data.sectorSize * 16;
w25q_data.capacityKB = (w25q_data.sectorCount * w25q_data.sectorSize) / 1024;
w25q_get_uid();
w25q_read_status_register_1();
w25q_read_status_register_2();
w25q_read_status_register_3();
w25q_data.lock = 0;
return true;
}
void w25q_read_status_register_1(){
w25q_send_cmd(i_read_status_r1, &w25q_data.statusRegister1, 1);
}
void w25q_read_status_register_2(){
w25q_send_cmd(i_read_status_r2, &w25q_data.statusRegister2, 1);
}
void w25q_read_status_register_3(){
w25q_send_cmd(i_read_status_r3, &w25q_data.statusRegister3, 1);
}
void w25q_write_status_register_1(){
w25q_send_cmd(i_write_status_r1, &w25q_data.statusRegister1, 1);
}
void w25q_write_status_register_2(){
w25q_send_cmd(i_write_status_r2, &w25q_data.statusRegister2, 1);
}
void w25q_write_status_register_3(){
w25q_send_cmd(i_write_status_r3, &w25q_data.statusRegister3, 1);
}
void w25q_wait_for_write_end(void)
{
sleep_ms(1);
w25q_spi_cs_low();
spi_write_blocking(w25q_data.spi, &i_read_status_r1,1);
do
{
spi_read_blocking(w25q_data.spi, 0x00, &w25q_data.statusRegister1,1);
sleep_ms(1);
} while ((w25q_data.statusRegister1 & 0x01) == 0x01);
w25q_spi_cs_high();
}
void w25q_erase_chip() {
while (w25q_data.lock) sleep_ms(1);
w25q_data.lock=1;
w25q_write_enable();
w25q_send_simple_cmd(i_erase_chip);
w25q_wait_for_write_end();
sleep_ms(10);
w25q_data.lock=0;
}
void w25q_page_program(uint32_t page_addr, uint16_t offset, uint8_t *buf, uint32_t len) {
while (w25q_data.lock) sleep_ms(1);
w25q_data.lock=1;
if (offset + len > w25q_data.pageSize) {
len = w25q_data.pageSize - offset;
}
page_addr = (page_addr * w25q_data.pageSize) + offset;
w25q_wait_for_write_end();
w25q_write_enable();
w25q_send_cmd_write(i_page_program, page_addr, buf, len);
w25q_wait_for_write_end();
sleep_ms(1);
w25q_data.lock=0;
}
/*===========================*/
uint32_t w25_page_to_sector_address(uint32_t pageAddress)
{
return ((pageAddress * w25q_data.pageSize) / w25q_data.sectorSize);
}
uint32_t w25q_page_to_block_address(uint32_t pageAddress)
{
return ((pageAddress * w25q_data.pageSize) / w25q_data.blockSize);
}
uint32_t w25q_data_sector_to_block_address(uint32_t sectorAddress)
{
return ((sectorAddress * w25q_data.sectorSize) / w25q_data.blockSize);
}
uint32_t w25q_sector_to_page_address(uint32_t sectorAddress)
{
return (sectorAddress * w25q_data.sectorSize) / w25q_data.pageSize;
}
uint32_t w25q_block_to_page_address(uint32_t blockAddress)
{
return (blockAddress * w25q_data.blockSize) / w25q_data.pageSize;
}
/*============================*/
void w25q_write_sector(uint32_t sect_addr, uint32_t offset, uint8_t *buf, uint32_t len) {
if (offset >= w25q_data.sectorSize) return;
if (offset + len > w25q_data.sectorSize)
len = w25q_data.sectorSize - offset;
uint32_t startPage;
int32_t bytesToWrite;
uint32_t localOffset;
startPage = w25q_sector_to_page_address(sect_addr) + (offset / w25q_data.pageSize);
localOffset = offset % w25q_data.pageSize;
bytesToWrite = len;
do
{
w25q_page_program(startPage, localOffset, buf, bytesToWrite);
startPage++;
bytesToWrite -= w25q_data.pageSize - localOffset;
buf += w25q_data.pageSize - localOffset;
localOffset = 0;
} while (bytesToWrite > 0);
}
void w25q_write_block_64k(uint32_t blk_addr, uint32_t offset, uint8_t *buf, uint32_t len) {
if ((len > w25q_data.blockSize) || (len == 0))
len = w25q_data.blockSize;
if (offset >= w25q_data.blockSize)
return;
uint32_t startPage;
int32_t bytesToWrite;
uint32_t localOffset;
if ((offset + len) > w25q_data.blockSize)
bytesToWrite = w25q_data.blockSize - offset;
else
bytesToWrite = len;
startPage = w25q_block_to_page_address(blk_addr) + (offset / w25q_data.pageSize);
localOffset = offset % w25q_data.pageSize;
do
{
w25q_page_program(startPage, localOffset, buf, len);
startPage++;
bytesToWrite -= w25q_data.pageSize - localOffset;
buf += w25q_data.pageSize - localOffset;
localOffset = 0;
} while (bytesToWrite > 0);
}
void w25q_read_bytes(uint32_t address, uint8_t *buf, uint32_t len) {
while (w25q_data.lock == 1) sleep_ms(1);
w25q_data.lock = 1;
w25q_send_cmd_read(i_fast_read_data, address, buf, len, true);
sleep_ms(1);
w25q_data.lock = 0;
}
void w25q_read_page(uint32_t page_addr, uint32_t offset, uint8_t *buf, uint32_t len) {
while (w25q_data.lock == 1) sleep_ms(1);
w25q_data.lock = 1;
if (offset >= w25q_data.pageSize) return;
if ((offset + len) >= w25q_data.pageSize)
len = w25q_data.pageSize - offset;
page_addr = page_addr * w25q_data.pageSize + offset;
w25q_send_cmd_read(i_fast_read_data, page_addr, buf, len, true);
sleep_ms(1);
w25q_data.lock = 0;
}
void w25q_read_sector(uint32_t sect_addr, uint32_t offset, uint8_t *buf, uint32_t len) {
if (offset >= w25q_data.sectorSize) return;
if (offset + len > w25q_data.sectorSize)
len = w25q_data.sectorSize - offset;
uint32_t startPage;
int32_t bytesToRead;
uint32_t localOffset;
bytesToRead = len;
startPage = w25q_sector_to_page_address(sect_addr) + (offset / w25q_data.pageSize);
localOffset = offset % w25q_data.pageSize;
do
{
w25q_read_page(startPage, localOffset, buf, bytesToRead);
startPage++;
bytesToRead -= w25q_data.pageSize - localOffset;
buf += w25q_data.pageSize - localOffset;
localOffset = 0;
} while (bytesToRead > 0);
}
void w25q_read_block(uint32_t blk_addr, uint32_t offset, uint8_t *buf, uint32_t len) {
if (offset+len > w25q_data.blockSize)
len = w25q_data.blockSize-offset;
uint32_t startPage;
int32_t bytesToRead;
uint32_t localOffset;
bytesToRead = len;
startPage = w25q_block_to_page_address(blk_addr) + (offset / w25q_data.pageSize);
localOffset = offset % w25q_data.pageSize;
do
{
w25q_read_page(startPage, localOffset, buf, bytesToRead);
startPage++;
bytesToRead -= w25q_data.pageSize - localOffset;
buf += w25q_data.pageSize - localOffset;
localOffset = 0;
} while (bytesToRead > 0);
}
void w25q_sector_erase(uint32_t sect_addr) {
while(w25q_data.lock) sleep_ms(1);
w25q_data.lock=1;
sect_addr = sect_addr * w25q_data.sectorSize;
w25q_wait_for_write_end();
w25q_write_enable();
w25q_send_cmd_addr(i_sector_erase, sect_addr);
w25q_wait_for_write_end();
sleep_ms(1);
w25q_data.lock=0;
}
void w25q_block_erase_32k(uint32_t blk_addr) {
while(w25q_data.lock) sleep_ms(1);
w25q_data.lock=1;
blk_addr = blk_addr * w25q_data.sectorSize * 8;
w25q_wait_for_write_end();
w25q_write_enable();
w25q_send_cmd_addr(i_block_erase_32k, blk_addr);
w25q_wait_for_write_end();
sleep_ms(1);
w25q_data.lock=0;
}
void w25q_block_erase_64k(uint32_t blk_addr) {
while(w25q_data.lock) sleep_ms(1);
w25q_data.lock=1;
blk_addr = blk_addr * w25q_data.sectorSize * 16;
w25q_wait_for_write_end();
w25q_write_enable();
w25q_send_cmd_addr(i_block_erase_64k, blk_addr);
w25q_wait_for_write_end();
sleep_ms(1);
w25q_data.lock=0;
}
void w25q_get_manufacter_device_id(uint8_t *mid){
assert(w25q_data.spi);
w25q_send_cmd_read(i_device_id, 0x000000, mid, 2, false);
}
void w25q_get_JEDEC_ID() {
uint8_t temp[3];
w25q_send_cmd(i_JEDEC_ID, temp, 3);
w25q_data.jedec_id = ((uint32_t)temp[0] << 16) | ((uint32_t)temp[1] << 8) | (uint32_t)temp[2];
}
void w25q_get_uid() {
assert(w25q_data.spi);
txbuf[0]= 0x4b;
txbuf[1] = 0x00; txbuf[2] = 0x00; txbuf[3] = 0x00;txbuf[4]=0x00;
w25q_spi_cs_low();
spi_write_blocking(w25q_data.spi, txbuf, 5);
spi_read_blocking(w25q_data.spi, 0x00, w25q_data.uuid, 8);
w25q_spi_cs_high();
}
- W25Q.h
#ifndef W25Q_H
#define W25Q_H
#include "stdio.h"
#include "stdlib.h"
#include "pico/stdlib.h"
#include "hardware/spi.h"
#define SPI_PORT spi0
#define PIN_MISO 16
#define PIN_CS 17
#define PIN_SCK 18
#define PIN_MOSI 19
typedef struct {
spi_inst_t *spi;
uint cs_pin;
uint8_t uuid[8];
uint32_t jedec_id;
uint32_t blockCount;
uint32_t pageCount;
uint32_t sectorCount;
uint16_t pageSize;
uint32_t sectorSize;
uint32_t blockSize;
uint8_t statusRegister1;
uint8_t statusRegister2;
uint8_t statusRegister3;
uint32_t capacityKB;
uint8_t lock;
} w25q_data_t;
bool w25q_spi_init(spi_inst_t *spi, uint cs_pin);
void w25q_get_manufacter_device_id(uint8_t *mid);
void w25q_get_JEDEC_ID();
void w25q_erase_chip();
void w25q_page_program(uint32_t page_addr, uint16_t offset, uint8_t *buf, uint32_t len);
void w25q_write_sector(uint32_t sect_addr, uint32_t offset, uint8_t *buf, uint32_t len);
void w25q_write_block_64k(uint32_t blk_addr, uint32_t offset, uint8_t *buf, uint32_t len);
void w25q_read_bytes(uint32_t address, uint8_t *buf, uint32_t len);
void w25q_read_page(uint32_t page_addr, uint32_t offset, uint8_t *buf, uint32_t len);
void w25q_read_sector(uint32_t sect_addr, uint32_t offset, uint8_t *buf, uint32_t len);
void w25q_read_block(uint32_t blk_addr, uint32_t offset, uint8_t *buf, uint32_t len);
//void w25q_read_data(uint32_t address, uint8_t *buf, uint32_t len);
//void w25q_fast_read_data(uint32_t address, uint8_t *buf, uint32_t len);
void w25q_read_status_register_1();
void w25q_read_status_register_2();
void w25q_read_status_register_3();
void w25q_write_status_register_1();
void w25q_write_status_register_2();
void w25q_write_status_register_3();
void w25q_sector_erase(uint32_t sect_addr);
void w25q_block_erase_32k(uint32_t blk_addr);
void w25q_block_erase_64k(uint32_t blk_addr);
void w25q_get_uid();
void w25q_write_enable();
void w25q_write_diable();
#endif
- spi_flash_fatfs.c
#include <stdio.h>
#include "pico/stdlib.h"
#include "hardware/spi.h"
#include "W25Q.h"
#include "ff.h"
#include "diskio.h"
#include "hardware/flash.h"
int main()
{
stdio_init_all();
/*
uint8_t testbuf[256];
uint32_t offset=0x100000; // 1M
for (uint32_t i=0; i < 256; i++) {
uint8_t c = rand() % 127;
if (c < 33) c='A';
testbuf[i] = c;
}
flash_range_erase(offset, 4096); // one sector
printf("write into flash page:");
for (uint32_t i=0; i < 256; i++) {
if (i % 100 == 0) printf("\n");
printf("%c", testbuf[i]);
}
printf("\n\n");
flash_range_program(offset+256, testbuf, 256); // second page
printf("read out flash page:");
for (uint32_t i=0; i < 256; i++) {
if (i %100 == 0) printf("\n");
printf("%c", *(uint8_t*)(XIP_BASE+offset+256+i)); //XIP_BASE + (byte offset) read out
}
printf("\nread finished\n\n");
//===========//
uint8_t testbuf[4096*2];
w25q_spi_init(SPI_PORT, PIN_CS);
for (uint32_t i=0; i < 4096*2; i++) {
uint8_t c = rand() % 127;
if (c < 33) c+=33;
testbuf[i] = c;
}
w25q_sector_erase(0);
w25q_sector_erase(1);
w25q_write_sector(0, 0, testbuf, 4096);
w25q_write_sector(1, 0, testbuf+4096, 4096);
printf("write data:sector 0, page 0");
for (int i =0; i< 256; i++) {
if (i % 100 == 0) printf("\n");
printf("%c",testbuf[i]);
}
printf("\n\nwrite data:sector 1, page 0");
for (int i =4096; i< 4096+256; i++) {
if ((i-4096) % 100 == 0) printf("\n");
printf("%c",testbuf[i]);
}
printf("\n\nclear buffer\n");
for (uint32_t i=0; i < 4096*2; i++) {
testbuf[i] = 0;
}
w25q_read_page(0, 0, testbuf, 256);
printf("\n\nread data:sector 0, page 0");
for (int i =0; i< 256; i++) {
if (i % 100 == 0) printf("\n");
printf("%c",testbuf[i]);
}
w25q_read_page(16, 0, testbuf, 256);
printf("\n\nread data:sector 1, page 0");
for (int i =0; i< 256; i++) {
if (i % 100 == 0) printf("\n");
printf("%c",testbuf[i]);
}
printf("\ntest finished\n");
*/
FRESULT res;
FATFS fs;
FIL fil;
UINT br;
uint8_t work[4096*2];
uint8_t readbuff[4096*2];
res = f_mkfs("0:", 0, work, 4096);
if(res != FR_OK) {
printf("mkfs error\n");
return 1;
}
printf("mkfs successfully(only run once)\n");
for (uint32_t i=0; i < 4096*2; i++) {
uint8_t c = rand() % 127;
if (c < 31) c+=31;
work[i] = c;
}
printf("write buffer:200-300\n");
for (uint32_t i = 200; i <= 300; i++) {
printf("%c",work[i]);
}
printf("\n");
res = f_mount(&fs, "0:", 1);
if (res != FR_OK) {
printf("mount error\n");
return 1;
}
res = f_open(&fil, "test.txt", FA_CREATE_ALWAYS|FA_WRITE);
if (res != FR_OK) {
printf("open error\n");
return 1;
}
f_write(&fil, work, 4096*2, &br);
f_close(&fil);
res = f_open(&fil, "test.txt", FA_READ);
if (res != FR_OK) {
printf("read open error\n");
return 1;
}
f_read(&fil, readbuff, 4096*2, &br);
printf("read buff:200-300\n");
for (uint32_t i = 200; i <= 300; i++) {
printf("%c",readbuff[i]);
}
printf("\n\n\n");
f_close(&fil);
return 0;
}
- FatFs/CMakeLists.txt
add_library(FatFs INTERFACE)
target_sources(FatFs INTERFACE
${CMAKE_CURRENT_LIST_DIR}/flash_diskio.c
${CMAKE_CURRENT_LIST_DIR}/ff.c
${CMAKE_CURRENT_LIST_DIR}/ffsystem.c
${CMAKE_CURRENT_LIST_DIR}/ffunicode.c
)
target_include_directories(FatFs INTERFACE
${CMAKE_CURRENT_LIST_DIR}/FatFs
)
target_link_libraries(FatFs INTERFACE
hardware_spi
hardware_dma
pico_stdlib
)
- FatFs/flash_diskio.c
#include "stdio.h"
#include "ff.h" /* Obtains integer types */
#include "diskio.h" /* Declarations of disk functions */
#include "W25Q.h"
#include "hardware/rtc.h"
#include "pico/util/datetime.h"
DSTATUS Stat = STA_NOINIT;
extern w25q_data_t w25q_data;
/*-----------------------------------------------------------------------*/
/* Get Drive Status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
return Stat;
}
/*-----------------------------------------------------------------------*/
/* Inidialize a Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
Stat=STA_NOINIT;
if (w25q_spi_init(SPI_PORT, PIN_CS))
Stat = RES_OK;
return Stat;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
BYTE *buff, /* Data buffer to store read data */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to read */
)
{
DRESULT res;
/* pdrv should be 0 */
if (pdrv || !count) return RES_PARERR;
/* no disk */
if (Stat & STA_NOINIT) return RES_NOTRDY;
w25q_read_sector(sector, 0, buff, count*w25q_data.sectorSize);
return RES_OK;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
#if FF_FS_READONLY == 0
DRESULT disk_write (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
const BYTE *buff, /* Data to be written */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to write */
)
{
BYTE *tbuf=(BYTE*)buff;
while(count > 1)
{
w25q_sector_erase(sector);
w25q_write_sector(sector, 0, tbuf, w25q_data.sectorSize);
count--;
tbuf += w25q_data.sectorSize;
sector++;
}
if (count == 1)
{
w25q_sector_erase(sector);
w25q_write_sector(sector, 0, tbuf, w25q_data.sectorSize);
count--;
}
return count ? RES_ERROR : RES_OK;
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
DRESULT disk_ioctl (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE cmd, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
DRESULT res = RES_ERROR;
switch(cmd) {
case CTRL_SYNC:
res = RES_OK;
break;
case GET_SECTOR_SIZE:
*(WORD*)buff = (WORD)w25q_data.sectorSize; // in f_mkfs() [WORD ss]
res = RES_OK;
break;
case GET_BLOCK_SIZE:
*(DWORD*)buff = w25q_data.blockSize;
res = RES_OK;
break;
case GET_SECTOR_COUNT:
*(DWORD*)buff = w25q_data.sectorCount;
res = RES_OK;
break;
default:
res = RES_PARERR;
break;
}
return res;
}
DWORD get_fattime(void) {
datetime_t t = {0, 0, 0, 0, 0, 0, 0};
bool rc = rtc_get_datetime(&t);
if (!rc) return 0;
DWORD fattime = 0;
// bit31:25
// Year origin from the 1980 (0..127, e.g. 37 for 2017)
uint8_t yr = t.year - 1980;
fattime |= (0b01111111 & yr) << 25;
// bit24:21
// Month (1..12)
uint8_t mo = t.month;
fattime |= (0b00001111 & mo) << 21;
// bit20:16
// Day of the month (1..31)
uint8_t da = t.day;
fattime |= (0b00011111 & da) << 16;
// bit15:11
// Hour (0..23)
uint8_t hr = t.hour;
fattime |= (0b00011111 & hr) << 11;
// bit10:5
// Minute (0..59)
uint8_t mi = t.min;
fattime |= (0b00111111 & mi) << 5;
// bit4:0
// Second / 2 (0..29, e.g. 25 for 50)
uint8_t sd = t.sec / 2;
fattime |= (0b00011111 & sd);
return fattime;
}
沒有留言:
張貼留言