prettyprint

2020年10月28日 星期三

使用STM32F103C8T6 RTC 實作時鐘、鬧鐘

本實驗使用STM32F103C8T6 MCU來實作時鐘(含鬧鐘功能),

使用元件:

  1. STM32F103C8T6 x1
  2. 按鈕 x3
  3. 1k電阻 x3
  4. OLED128x64   x1
  5. 蜂鳴器 x1
  6. 鈕扣電池 x1
功能需求:
  1. 可調整時間
  2. 設定鬧鐘
  3. 斷電VBAT供電
  4. 鬧鐘響起時按任何按鈕停止鬧鈴,響20秒未按按鈕,停止鬧鈴,5分鐘後再響鬧鈴,共三次。
  5. 2分鐘關螢幕進入STOP模式,按任一按鈕或鬧鈴響起喚醒。
在實作過程中遇到一些問題,例如無法進入STOP mode,在移除電源後,隔日復電日期未能自動更新等問題,可參閱另兩篇備忘文章
  1. https://rfwumcu.blogspot.com/2020/10/stm32-rtc.html
  2. https://rfwumcu.blogspot.com/2020/10/stm32-pwr-low-power-mode.html
實作過程:
一、線路圖


使用STM32CubeIDE開發環境與HAL library。

Timers分別使用RTC,TIM1,TIM2,TIM3。

RTC產稱每秒一次中斷(hrtc.Init.AsynchPrediv = RTC_AUTO_1_SECOND)計時更新顯示。
TIM1: 設定為base timer,計時2分鐘關閉螢幕,進入STOP Mode以節省電源。
TIM2:設定為base timer,作為Software Debounce用,按鈕按下後啟動50ms後中斷。
TIM3:設定為1Hz PWM,驅動鬧鈴蜂鳴器,鬧鐘鬧鈴響起後,未按取消鬧鈴,20秒後關閉鬧鈴,5分鐘後再響鬧鈴共3次。

  • RCC Clock configuration 




    RCC啟用LSE作為RTC Clock,周邊clock為HSI,當系統進入STOP Mode使用的Clock。
  • RTC設定參數
在Parameter選取Automatic Predivider Calculation Enable 以產生每秒一次中斷(RTC_AUTO_1_SECOND)。

在NVIC Enable RTC global interrupt 以便每秒產生一次中斷並呼叫
void HAL_RTCEx_RTCEventCallback(RTC_HandleTypeDef* hrtc) Callback function
在這function 中更新時間顯示。

啟用NVIC RTC alarm interrupt以便在呼叫HAL_RTC_SetAlarm_IT啟動Alarm Interrupt,並在設定Alarm時間呼叫
void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef* hrtc) Callback function
 
  • TIM1參數設定
TIM1設定為base timer 時間為120秒關閉螢幕,進入stop mode,系統clock為8M:
8M/(39999+1)=200(Hz),
200/24000=0.0083(週期為1/0.0083=120秒)


NVIC啟用update interrupt

  • TIM2參數設定
TIM2仍設為Base timer 週期為50ms(Prescaler:7999, ARR:50) 
PB13~15設為EXTI,PB13為時間設定選擇鍵,PB15為鬧鐘設定選擇鍵,PB14為數值調整鍵。


Enable EXTI line[15:10] interrupts

當按鍵按下時產生中斷呼叫HAL_GPIO_EXTI_Callbak function,啟動TIM2
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
	if ((GPIO_Pin == GPIO_PIN_13 ||GPIO_Pin == GPIO_PIN_14 || GPIO_Pin == GPIO_PIN_15) && !buttonPress)
	{
		buttonPress=1;
		HAL_TIM_Base_Start_IT(&htim2);
	}


}
50ms後產生中斷呼叫HAL_TIM_PeriodElapsedCallback檢查是否仍是按下狀態,以達到software debounce功能。
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim)
{
	if (htim->Instance==TIM2)
	{
		if (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_13) == GPIO_PIN_RESET)
		{
			buttonPress=0;
			HAL_TIM_Base_Stop_IT(&htim2);
			EXTIButton13Press();
		}
.
.
.
}
  • TIM3參數設定:
        TIM3 Channel1(對應PB4) 設定為1Hz PWM, duty為70%,驅動鬧鈴蜂鳴器。


藉由呼叫HAL_RTC_SetAlarm_IT(&hrtc, &atime, RTC_FORMAT_BIN);設定Alarm,當時間到達時系統呼叫 callback function void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef* hrtc),並啟動TIM3 Channel 1 PWM(HAL_TIM_PWM_Start_IT(&htim3, TIM_CHANNEL_1);)讓蜂鳴器發出聲音。

HAL_RTC_SetAlarm_IT(&hrtc, &atime, RTC_FORMAT_BIN);
.
.
.
void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef* hrtc)
{
.
.
.
            HAL_TIM_PWM_Start_IT(&htim3, TIM_CHANNEL_1);
.
.
.
}

在TIM3 PWM interrupt callback function 中檢查時間是否需要停止蜂鳴聲
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef* htim)
{
        if (alarm_count >= ALARM_BUZZ) //after ALARM_BUZZ Second turn off alarm
{
clearAlarm();
.
                .
                .
           };
}



實作展示:





使用OLED128x64 I2C介面200歐姆上拉電阻,使用程式庫
複製ssd1306.c ssd1306_fonts,c ssd1306.h ssd1306_fonts.h,ssd1306_conf.h

完整程式碼:
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * 

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "ssd1306.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define BLINK_DELAY 200 #define ALARM_BUZZ 20 #define ALARM_REPEAT 3 #define ALARM_RESUME_MIN 5 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ I2C_HandleTypeDef hi2c1; RTC_HandleTypeDef hrtc; TIM_HandleTypeDef htim1; TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim3; /* USER CODE BEGIN PV */ RTC_TimeTypeDef stime; RTC_DateTypeDef sdate; RTC_AlarmTypeDef atime; uint8_t year, month,day,hour, min,sec,ahour,amin; char sDateBuf[12], sTimeBuf[10], sWeekdayBuf[10],sAlarmBuf[10]; uint8_t alarmSet=0; uint8_t alarmEvent=0; uint8_t buttonPress=0; uint8_t startTimer1=0; uint8_t inStopMode=0,enterStopMode=0; uint8_t opMode=0; //0:normal, 1: in adjust time mode, 2: in set Alarm mode uint8_t adjustTimeItem = 0; //0:year,1:month, 2:day, 3;Hour, 4:min, 5:sec uint8_t adjustAlarmItem=0; // 0: enter alarm set mode, 1:on-off,2:hour,3:minute uint8_t strWeekday[7][10]={ "Sun","Mon","Tue","Wed","Thu","Fri","Sat"}; uint8_t alarm_count=0; uint8_t alarm_resume=0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_RTC_Init(void); static void MX_I2C1_Init(void); static void MX_TIM1_Init(void); static void MX_TIM2_Init(void); static void MX_TIM3_Init(void); /* USER CODE BEGIN PFP */ void EXTIButton13Press(void); void EXTIButton14Press(void); void EXTIButton15Press(void); void wakeUpFromStopMode(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ static uint8_t isLeapYear(uint16_t nYear) { if ((nYear % 4U) != 0U) { return 0U; } if ((nYear % 100U) != 0U) { return 1U; } if ((nYear % 400U) == 0U) { return 1U; } else { return 0U; } } void adjustAlarm(void) { char buf[4]; switch(adjustAlarmItem) { case 1: if(alarmSet) { sprintf(buf,"ON"); } else { sprintf(buf,"OFF"); } ssd1306_SetCursor(1, 1); ssd1306_WriteString(" ", Font_11x18, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY/4); ssd1306_SetCursor(1, 1); ssd1306_WriteString(buf, Font_11x18, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY); break; case 2: ssd1306_SetCursor(5, 22); ssd1306_WriteString(" ", Font_16x26, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY/4); sprintf(buf, "%02d", ahour); ssd1306_SetCursor(5, 22); ssd1306_WriteString(buf, Font_16x26, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY); break; case 3: ssd1306_SetCursor(53, 22); ssd1306_WriteString(" ", Font_16x26, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY/4); sprintf(buf, "%02d", amin); ssd1306_SetCursor(53, 22); ssd1306_WriteString(buf, Font_16x26, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY); break; } } void adjustTime(void) { char buf[4]; switch(adjustTimeItem) { case 0: ssd1306_SetCursor(1, 1); ssd1306_WriteString(" ", Font_11x18, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY/4); sprintf(buf, "%d", year); ssd1306_SetCursor(1, 1); ssd1306_WriteString(buf, Font_11x18, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY); break; case 1: ssd1306_SetCursor(34, 1); ssd1306_WriteString(" ", Font_11x18, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY/4); sprintf(buf, "%02d", month); ssd1306_SetCursor(34, 1); ssd1306_WriteString(buf, Font_11x18, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY); break; case 2: ssd1306_SetCursor(67, 1); ssd1306_WriteString(" ", Font_11x18, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY/4); sprintf(buf, "%02d", day); ssd1306_SetCursor(67, 1); ssd1306_WriteString(buf, Font_11x18, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY); break; case 3: ssd1306_SetCursor(1, 25); ssd1306_WriteString(" ", Font_16x26, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY/4); sprintf(buf, "%02d", hour); ssd1306_SetCursor(1, 25); ssd1306_WriteString(buf, Font_16x26, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY); break; case 4: ssd1306_SetCursor(49, 25); ssd1306_WriteString(" ", Font_16x26, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY/4); sprintf(buf, "%02d", min); ssd1306_SetCursor(49, 25); ssd1306_WriteString(buf, Font_16x26, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY); break; case 5: ssd1306_SetCursor(97, 31); ssd1306_WriteString(" ", Font_11x18, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY/4); sprintf(buf, "%02d", sec); ssd1306_SetCursor(97, 31); ssd1306_WriteString(buf, Font_11x18, White); ssd1306_UpdateScreen(); HAL_Delay(BLINK_DELAY); break; } } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_RTC_Init(); MX_I2C1_Init(); MX_TIM1_Init(); MX_TIM2_Init(); MX_TIM3_Init(); /* USER CODE BEGIN 2 */ ssd1306_Init(); HAL_TIM_Base_Start_IT(&htim1); startTimer1 = 1; HAL_TIM_Base_Start_IT(&htim2); HAL_TIM_Base_Stop_IT(&htim2); atime.Alarm=RTC_ALARM_A; atime.AlarmTime.Hours=0; atime.AlarmTime.Minutes=0; atime.AlarmTime.Seconds=0; /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { if (enterStopMode) { enterStopMode=0; HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_STOPENTRY_WFI); } switch(opMode) { case 1: //in adjust Time Mode adjustTime(); break; case 2: // in set Alarm Mode adjustAlarm(); break; } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC; PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 400000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief RTC Initialization Function * @param None * @retval None */ static void MX_RTC_Init(void) { /* USER CODE BEGIN RTC_Init 0 */ /* USER CODE END RTC_Init 0 */ RTC_TimeTypeDef sTime = {0}; RTC_DateTypeDef DateToUpdate = {0}; /* USER CODE BEGIN RTC_Init 1 */ /* USER CODE END RTC_Init 1 */ /** Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.AsynchPrediv = RTC_AUTO_1_SECOND; hrtc.Init.OutPut = RTC_OUTPUTSOURCE_ALARM; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN Check_RTC_BKUP */ if (HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR1) != 0x6060) { /* USER CODE END Check_RTC_BKUP */ /** Initialize RTC and set the Time and Date */ sTime.Hours = 13; sTime.Minutes = 56; sTime.Seconds = 0; if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } DateToUpdate.WeekDay = RTC_WEEKDAY_SUNDAY; DateToUpdate.Month = RTC_MONTH_SEPTEMBER; DateToUpdate.Date = 26; DateToUpdate.Year = 20; if (HAL_RTC_SetDate(&hrtc, &DateToUpdate, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN RTC_Init 2 */ uint32_t dateToStore; memcpy(&dateToStore,&(hrtc.DateToUpdate),sizeof(uint32_t)); BKP->DR2 = dateToStore >> 16; BKP->DR3 = dateToStore & 0xffff; HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR1, 0x6060); } else { uint32_t dateMem; dateMem = BKP->DR2 << 16; dateMem |= BKP->DR3; memcpy(&DateToUpdate,&dateMem,sizeof(uint32_t)); HAL_RTC_SetDate(&hrtc, &DateToUpdate, RTC_FORMAT_BIN);           HAL_RTC_GetTime(&hrtc, &stime, RTC_FORMAT_BIN); //get time counter and call RTC_DateUpdate HAL_RTCEx_SetSecond_IT(&hrtc); } /* USER CODE END RTC_Init 2 */ } /** * @brief TIM1 Initialization Function * @param None * @retval None */ static void MX_TIM1_Init(void) { /* USER CODE BEGIN TIM1_Init 0 */ /* USER CODE END TIM1_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM1_Init 1 */ /* USER CODE END TIM1_Init 1 */ htim1.Instance = TIM1; htim1.Init.Prescaler = 39999; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 24000; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim1.Init.RepetitionCounter = 0; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM1_Init 2 */ /* USER CODE END TIM1_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 7999; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 50; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } /** * @brief TIM3 Initialization Function * @param None * @retval None */ static void MX_TIM3_Init(void) { /* USER CODE BEGIN TIM3_Init 0 */ /* USER CODE END TIM3_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM3_Init 1 */ /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; htim3.Init.Prescaler = 7999; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 999; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim3) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim3) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 700; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM3_Init 2 */ /* USER CODE END TIM3_Init 2 */ HAL_TIM_MspPostInit(&htim3); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /*Configure GPIO pins : PB13 PB14 PB15 */ GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI15_10_IRQn); } /* USER CODE BEGIN 4 */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if ((GPIO_Pin == GPIO_PIN_13 ||GPIO_Pin == GPIO_PIN_14 || GPIO_Pin == GPIO_PIN_15) && !buttonPress) { buttonPress=1; HAL_TIM_Base_Start_IT(&htim2); } } void HAL_RTCEx_RTCEventCallback(RTC_HandleTypeDef* hrtc) { if (opMode==0) { HAL_RTC_GetTime(hrtc, &stime, RTC_FORMAT_BIN); HAL_RTC_GetDate(hrtc, &sdate, RTC_FORMAT_BIN); ssd1306_Fill(Black); sprintf(sTimeBuf, "%02d", stime.Seconds); ssd1306_SetCursor(97, 31); ssd1306_WriteString(sTimeBuf, Font_11x18, White); sprintf(sTimeBuf, "%02d:%02d:", stime.Hours,stime.Minutes); ssd1306_SetCursor(1,25); ssd1306_WriteString(sTimeBuf, Font_16x26, White); sprintf(sDateBuf, "%02d/%02d/%02d", sdate.Year,sdate.Month,sdate.Date); ssd1306_SetCursor(1,1); ssd1306_WriteString(sDateBuf, Font_11x18, White); sprintf(sWeekdayBuf, "%s", strWeekday[sdate.WeekDay]); ssd1306_SetCursor((int)(128-strlen(sWeekdayBuf)*7),7); ssd1306_WriteString(sWeekdayBuf, Font_7x10, White); if (alarmSet) { sprintf(sAlarmBuf, "%02d:%02d", atime.AlarmTime.Hours,atime.AlarmTime.Minutes); ssd1306_SetCursor(52, 52); ssd1306_WriteString(sAlarmBuf, Font_7x10, White); ssd1306_SetCursor(1, 52); ssd1306_WriteString("Alarm: ", Font_7x10, White); } ssd1306_UpdateScreen(); } } void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim) { if (htim->Instance==TIM2) { if (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_13) == GPIO_PIN_RESET) { buttonPress=0; HAL_TIM_Base_Stop_IT(&htim2); EXTIButton13Press(); } if (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_14) == GPIO_PIN_RESET) { buttonPress=0; HAL_TIM_Base_Stop_IT(&htim2); EXTIButton14Press(); } if (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_15) == GPIO_PIN_RESET) { buttonPress=0; HAL_TIM_Base_Stop_IT(&htim2); EXTIButton15Press(); } } if (htim->Instance==TIM1) { if (startTimer1 && !alarmEvent) { ssd1306_SetDisplayOn(0); startTimer1=0; HAL_TIM_Base_Stop_IT(htim); inStopMode=1; enterStopMode=1; } } } void clearAlarm(void) { HAL_TIM_PWM_Stop_IT(&htim3, TIM_CHANNEL_1); alarmEvent=0; alarmSet=0; alarm_count=0; } void EXTIButton13Press(void) { if(alarmEvent && alarmSet) { clearAlarm(); return; } if (inStopMode) { wakeUpFromStopMode(); } else { if (startTimer1) { startTimer1=0; HAL_TIM_Base_Stop_IT(&htim1); } switch(opMode) { case 0: opMode++; hour=stime.Hours; min=stime.Minutes; sec=stime.Seconds; year=sdate.Year; month=sdate.Month; day=sdate.Date; break; case 1: adjustTimeItem++; if (adjustTimeItem==6) { opMode=0; adjustTimeItem=0; stime.Hours=hour; stime.Minutes=min; stime.Seconds=sec; sdate.Year=year; sdate.Month=month; sdate.Date=day; atime.AlarmTime.Hours=ahour; atime.AlarmTime.Minutes=amin; if (HAL_RTC_SetTime(&hrtc, &stime, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } if (HAL_RTC_SetDate(&hrtc, &sdate, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } if (alarmSet) { HAL_RTC_SetAlarm_IT(&hrtc, &atime, RTC_FORMAT_BIN); } uint32_t dateToStore; memcpy(&dateToStore,&(hrtc.DateToUpdate),sizeof(uint32_t)); BKP->DR2 = dateToStore >> 16; BKP->DR3 = dateToStore & 0xffff; startTimer1=1; HAL_TIM_Base_Start_IT(&htim1); } } } } void EXTIButton14Press(void) { if(alarmEvent && alarmSet) { clearAlarm(); } if (inStopMode) { wakeUpFromStopMode(); } else { if (opMode==1) { int mDays=31; switch(adjustTimeItem) { case 0: year++; if (year > 99) year=20; break; case 1: month++; if (month > 12) month=1; case 2: if (month == 2) { if (isLeapYear(year)) { mDays=29; } else { mDays=28; } } if (month == 4 || month == 6 || month == 9 || month == 11) { mDays=30; } day++; if (day > mDays) day=1; break; case 3: hour=(hour+1)%24; break; case 4: min=(min+1)%60; break; case 5: sec=(sec+1)%60; break; } } if (opMode==2) { switch(adjustAlarmItem) { case 1: alarmSet = (alarmSet+1)%2; break; case 2: ahour = (ahour+1)%24; break; case 3: amin = (amin+1)%60; break; } } } } void EXTIButton15Press(void) { char buf[6]; if(alarmEvent && alarmSet) { clearAlarm(); return; } if (inStopMode) { wakeUpFromStopMode(); } else { opMode=2; if (startTimer1) { startTimer1=0; HAL_TIM_Base_Stop_IT(&htim1); } if (adjustAlarmItem == 0) { ssd1306_Fill(Black); if (alarmSet) { sprintf(buf,"ON "); } else { sprintf(buf, "OFF"); } ssd1306_SetCursor(1, 1); ssd1306_WriteString(buf, Font_11x18, White); sprintf(buf, "%02d:%02d", ahour, amin); ssd1306_SetCursor(5, 22); ssd1306_WriteString(buf, Font_16x26, White); ssd1306_UpdateScreen(); } adjustAlarmItem++; if (adjustAlarmItem == 4) { opMode=0; adjustAlarmItem=0; atime.AlarmTime.Hours=ahour; atime.AlarmTime.Minutes=amin; if (alarmSet) { alarmEvent=0; alarm_resume=0; HAL_RTC_SetAlarm_IT(&hrtc, &atime, RTC_FORMAT_BIN); } startTimer1=1; HAL_TIM_Base_Start_IT(&htim1); } } } void wakeUpFromStopMode(void) { inStopMode=0; ssd1306_SetDisplayOn(1); startTimer1=1; HAL_TIM_Base_Start_IT(&htim1); } void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef* hrtc) { if(alarmSet) { if (inStopMode) { wakeUpFromStopMode(); } alarmEvent=1; HAL_TIM_PWM_Start_IT(&htim3, TIM_CHANNEL_1); } } void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef* htim) { alarm_count++; if (alarm_count >= ALARM_BUZZ) //after ALARM_BUZZ Second turn off alarm { clearAlarm(); alarm_resume++; if (alarm_resume < ALARM_REPEAT) { amin += ALARM_RESUME_MIN; // resume alarm ALARM_RESUME_MIN minutes later if (amin >=60) { ahour++; amin = amin % 60; if (ahour >=24) ahour % 24; } atime.AlarmTime.Hours=ahour; atime.AlarmTime.Minutes=amin; alarmSet = 1; HAL_RTC_SetAlarm_IT(&hrtc, &atime, RTC_FORMAT_BIN); } else { alarm_resume=0; } } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/


沒有留言:

張貼留言